Name:

(1) (5 point) Compute the Jordan form of the following matrix.

$$
A=\left(\begin{array}{lll}
2 & 0 & 3 \\
0 & 3 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

(2) (5 points) Compute the Jordan form of the following matrix.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

(3) (5 points) Compute the Jordan form of the following matrix.

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(4) (5 points) Find all possible Jordan forms of a matrix with characteristic polynomial $p(\lambda)=(\lambda-1)^{2}(\lambda+3)^{3}$ and three eigenvectors.
(5) (5 points) Find a matrix similar to

$$
J=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

that is not J.
(6) (5 points) The matrix

$$
\left(\begin{array}{cccc}
2 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 \\
1 & 5 & 2 & -1 \\
0 & -4 & 0 & 4
\end{array}\right)
$$

has Jordan basis,

$$
\left(\begin{array}{c}
3 \\
-1 \\
3 \\
-2
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
2 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

How many eigenvectors does A have?

