(1) Determine whether the following matrix is diagonalizable over \mathbb{C}.

$$
M=\left(\begin{array}{ccc}
3 & 0 & 0 \\
1 & 2 & -2 \\
0 & 1 & 1
\end{array}\right)
$$

(2) Determine whether the following matrix is diagonalizable over \mathbb{C}.

$$
M=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(3) Determine whether the following matrix is diagonalizable over \mathbb{C}.

$$
M=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(4) Let A and B be matrices with the same characteristic polynomial over the same field. If A is diagonalizable, it is necessarily true that B is diagonalizable? Prove or give a counter example.
(5) Let $T: V \rightarrow V$ be a diagonalizable linear transformation. Is T an isomorphism? Prove or give a counter example.
(6) Let A and B be diagonalizable $n \times n$ matrices with the same set of eigenvectors. Show that A and B commute (that is, $A B=B A$).

