- (1) Give linear transformation $S: V_1 \to V_2$ and $T: V_2 \to V_3$ such that $S \circ T$ is an isomorphism, but separately S and T are not. (You may choose V_1, V_2 , and V_3 to be any vector spaces you like.)
- (2) Define a linear transformation $T: V \to V$ such that T^2 is the zero transformation but T is not.
- (3) Describe a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that T is it's own inverse but T is not the identity transformation or a multiple of it.

- (4) Let $T: V \to W$ and $S: W \to V$ be linear transformations such that $S \circ T$ is an isomorphism. Prove $\dim V \leq \dim W$.
- (5) Let $T: V \to W$ and $S: W \to V$ be linear transformations. Prove the following,

 $\operatorname{rank}(S \circ T) \le \min\{\operatorname{rank}(S), \operatorname{rank}(T)\}$

(6) Let $S,T: V \to W$ be linear transformations. Prove the following, $\operatorname{rank}(T+S) \leq \operatorname{rank}(T) + \operatorname{rank}(S)$