Name:

(1) Show that $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ is a linear transformation and find a basis for both $N(T)$ and $R(T)$.

$$
T(p(x))=x p^{\prime}(x)+p(1)
$$

(2) Show that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation and find a basis for both $N(T)$ and $R(T)$.

$$
T\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
x_{1}+x_{2} \\
x_{1}+2 x_{2} \\
x_{1}+3 x_{2}
\end{array}\right)
$$

(3) Show that $T: \mathbb{R}^{2} \rightarrow P_{2}(\mathbb{R})$ is a linear transformation and find a basis for both $N(T)$ and $R(T)$.

$$
T\binom{a_{1}}{a_{2}}=a_{1} x^{2}+a_{2} x+\left(a_{1}+a_{2}\right)
$$

(4) Let $T: V \rightarrow V$ be a linear transformation of a finite vector space such that $\operatorname{dim} V=n$ and let W_{1} and W_{2} be subspaces of V such that $T\left(W_{1}\right)=T\left(W_{2}\right)$ and $m=\operatorname{dim} W_{1} \geq \operatorname{dim} W_{2}$. Give examples of the following: (1) $\operatorname{rank}(T)=n$ and (2) $\operatorname{rank}(T)=n-m$.
(5) Let $V=W \oplus Z$ be a finite dimensional vector space (of $\operatorname{dim} n$) and let W be a subspace of V. The projection of V onto W can be represented by an $n \times n$ matrix P. The matrix $I-P$ also represents a projection. Determining what subspace $I-P$ projects onto.
(6) Let V and W be finite dimensional vector spaces. Prove that if $T: V \rightarrow W$ is one-to-one then $\operatorname{dim}(V) \leq$ $\operatorname{dim}(W)$. Give an example of why the converse is not true (that is show if $\operatorname{dim}(V) \leq \operatorname{dim}(W)$ that it is not necessarily true that T is one-to-one).

