Name:

(1) Give a basis for the subspace of $V=\mathbb{R}^{3}$ that satisfies the equations,

$$
\begin{gathered}
2 x-y=0 \\
x+y-z=0
\end{gathered}
$$

(2) What conditions must be placed on a, b, c, d, e and f such that the subset,

$$
S=\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right),\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right)\right\} \subset \mathbb{R}^{3}
$$

is linearly independent?
(3) Prove that two perpendicular vectors in \mathbb{R}^{2} form a linearly independent set.
(4) Let A be a 3×3 skew symmetric matrix, that is $A^{T}=-A$. Prove or disprove: the columns of A form a linearly independent set.
(5) Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and $T=\left\{t_{1}, \ldots, t_{m}\right\}$ be linearly independent subsets of a vector space V. Prove or disprove: The set $\left\{s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{m}\right\}$ is linearly independent if and only if $\operatorname{Span}(S) \cap \operatorname{Span}(T)=\{\underline{0}\}$.
(6) Describe a vector space, V, with a basis that contains infinitely many elements. Give an example of a basis of V.

