Name:

(1) Show that

$$
W=\left\{\left.\left(\begin{array}{c}
x \\
3 x \\
0
\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\}
$$

is a subspace of $V=\mathbb{R}^{3}$ with the usual componentwise addition and scalar multiplication.
(2) Give a counter example to the following statement: Let W_{1} and W_{2} be subspaces of a vector space V, then $W_{1} \cup W_{2}=\left\{x \mid x \in W_{1}\right.$ or $\left.x \in W_{2}\right\}$ is also a subspace of V.
(3) Let $V=\mathcal{F}(\mathbb{R}, \mathbb{R})$ be the vector space of functions from the real numbers to the real numbers with addition and scalar multiplication defined by,

$$
(f+g)(x)=f(x)+g(x) \quad \text { and } \quad(c f)(x)=c \cdot f(x)
$$

A function f is 1-periodic if $f(x)=f(x+1)$ for all $x \in \mathbb{R}$. Show that the set of all 1-periodic functions is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
(4) Consider the vector space,

$$
V=M_{3}(\mathbb{R})=\left\{\left.\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \right\rvert\, a_{i j} \in \mathbb{R} \quad \forall i, j\right\}
$$

And consider the subspace of diagonal matrices,

$$
D=\left\{\left.\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right) \right\rvert\, a_{i i} \in \mathbb{R} \quad \forall i\right\}
$$

Find a subspace W of V such that: $W \neq V, W \neq D$, and $D \subset W$.
(5) Show that

$$
W=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

is a subspace of

$$
V=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

with the usual component-wise addition and scalar multiplication.
(6) Show that the subset of invertible matrices is not a subspace of $M_{n}(\mathbb{R})(n \times n$ matrices with real components and component-wise addition and multiplication).

