(1) Prove that the vector space $V=\mathcal{F}(S, \mathbb{R})$ for $S=\{0,1\}$, with $(f+g)(x)=f(x)+g(x)$ and $c \dot{f}(x)=c f(x)$ has a zero element.
(2) A real valued function is odd if $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Show that the vector space $V=\{f(x) \in$ $\mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(-x)=-f(x)\}$ is closed under the usual addition and scalar multiplication, that is

$$
(f+g)(x)=f(x)+g(x), \quad(c f)(x)=c \cdot f(x)
$$

(3) Describe a vector space (that is define V, F, addition and scalar multiplication) such that V has finitely many elements.
(4) Show that $V=\mathbb{R}, F=\mathbb{C}$, and the usual addition and scalar multiplication is not a vector space.
(5) Let V be the set of all infinite sequences with entries in \mathbb{R},

$$
V=\left\{x=\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right) \mid a_{i} \in \mathbb{R} \forall i\right\}
$$

Let $F=\mathbb{R}$ and define addition and scalar multiplication by the following:

$$
\begin{gathered}
x+y=\left(a_{1}, a_{2}, \ldots\right)+\left(b_{1}, b_{2}, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots\right) \\
c \cdot x=c \cdot\left(a_{1}, a_{2}, \ldots\right)=\left(a_{c}, a_{c+1}, a_{c+2}, \ldots, a_{c+n}, \ldots\right)
\end{gathered}
$$

Show that the above is not a vector space.
(6) Let $V=\{0,1\}, F$ be a field and define addition and scalar multiplication by,

$$
\begin{gathered}
0+1=1+0=1,0+0=0,1+1=0 \\
c \cdot x=x \quad \forall x \in V \text { and } c \in F
\end{gathered}
$$

Prove this is not a vector space.

