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Abstract

We describe some representations of Clifford algebras, following Spin Geometry.

Warning: I am used to representation theory, so I may gloss over things that aren’t actually
obvious.

1 Basic definitions

Definition 1. Let K be a k-algebra.1 A K-representation of the Clifford algebra Cl(V, q) is
a morphism of algebras

ρ : Cl(V, q)→ homK(W,W )

where W is a K-algebra representation, and homK(W,W ) is the space of endomorphisms of
W commuting with the K-action.

We care about the case k = R and K = R, C, or H. Observe that a C-vector space is
simply an R-vector spaceW with an endomorphism J : W → W such that J2 = −1 = − IdW .
A representation ρ satisfies

ρ(φ)J = Jρ(φ)

for all φ ∈ Cl(V, q). In more sophisticated language: A C-representation of Cl(V, q) is a
vector space W that is a representation of Cl(V, q) (as an R-algebra) and a representation of
C (as an R-algebra) such that both representations commute.

Similarly, a H-vector space W is an R-vector space with endomorphisms I, J,K satisfying
the usual relations for quaternions, and an H-representation of Cl(V, q) is one commuting
with the action of H on W .

Any complex representation of Clr,s automatically extends to a representation of Clr,s ⊗
C ∼= Clr+s. (The isomorphism is because every Clr,s is a direct sum of matrix algebras,
and R(n)⊗R C ∼= C(n).) Similarly, any quaternionic representation of Clr,s is automatically
complex (with even complex dimension) because C is a subalgebra of H.

Example 1. Recall that Cl2 ∼= H. Cl2 acts on itself by left multiplication, which gives a
4-dimensional irreducible representation W of Cl2. We will show shortly that every repre-
sentation of Cl2 is isomorphic to an iterated direct sum of copies of W .

1The book says “field containing k,” but H isn’t a field, so I prefer this terminology.
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By the previous remark, W can also be viewed as a 2-dimensional complex representation.
More specifically, write C = spanR{1, i} ∼= spanR{1, e1}. It follows that Cl2 ∼= spanC{1, e2}.
The action of e1 is given by

e1 · 1 = e1 =

[
i
0

]
e1 · e2 = e1e2 = −e2e1 =

[
0
i

]
and of e2 by

e2 · 1 = e2 =

[
0
1

]
e2 · e2 = −1 =

[
−1
0

]
We can describe this representation in terms of complex matrices via

e1 7→
[
i 0
0 −i

]
, e2 7→

[
0 −1
1 0

]
, e1e2 7→

[
0 −i
−i 0

]
These matrices anticommute and square to −1, so they generate an algebra isomorphic to
the quaternions.

2 Classification

Definition 2. Let ρ : Cl(V, q)→ homK(W,W ) be a K-representation of the Clifford algebra
Cl(V, q). It is reducible if it splits as a direct sum

W = W1 ⊕W2

with the Wi invariant under the action of K and of Cl(V, q). It is irreducible if no such
representation exists.

These modules are usually called decomposable, but Clifford algebras are semisimple, so
the two properties are equivalent. We will discuss why they are semisimple later on.

It follows by easy induction on dimension that all representations of a semisimple algebra
can be written as direct sums of irreducibles. We are therefore interested in classifying all
the irreps (irreducible representations) up to isomorphism (a linear map commputing with
the representation.)

Lemma 1. Let K = R, C, or H and consider the R-algebra K(n) of n× n matrices. K(n)
has a natural representation on Kn, and up to equivalence this is the only irrep.

Proof. Matrix algebras are simple: the have no nontrivial proper ideals. It’s a fundamen-
tal result in representation theory that simple algebras have a single representation up to
isomorphism.
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We can now use the classification of Clifford algebras (which we haven’t done yet?) and
this lemma to write down the irreducible representations. We mostly care about Cln and
Cln,C. (Warning: the book uses notation for the complex Clifford algebra that’s easy to
misread, so I’m using a different one.) Here’s a summarized version of Table III:

n Cln vn dn K Cln,C vCn dCn
1 C 1 2 C C⊕ C 2 1
2 H 1 4 H C(2) 1 2
3 H⊕H 2 4 H C(2)⊕ C(2) 2 2
4 H(2) 1 8 H C(4) 1 4
5 C(4) 1 8 C C(4)⊕ C(4) 2 4
6 R(8) 1 8 R C(8) 1 8
7 R(8)⊕ R(8) 2 8 R C(8)⊕ C(8) 2 8
8 R(16) 1 16 R C(16) 1 16

where K indicates the largest of R,C,H with which the representation commutes, vn, vCn
count the number of distinct irreps, and dn, dCn give the dimension of the irreps over R and
C, respectively. (If there are two irreps it’s the same for both.)

This table tells you everything you’d want to know, because of the periodicity isomor-
phisms

Cln+8,0
∼= Cln,0 ⊗ Cl8,0

Cl0,n+8
∼= Cl0,n ⊗ Cl0,8

Cln+2,C ∼= Cln,C ⊗ Cl2,C

You can see how this pattern works in the complex case in the above table. The number
of irreps doesn’t change as you get to higher levels of the periodicity, but their dimensions
increase.

3 Representations of Spin and Pin

3.1 Motivating example

Let’s consider the historically important case of Spin3. Recall that Spin3 consists of the
unit-norm elements of Cl03

∼= Cl2 ∼= H. There are many ways of describing the quaternions,
and one is to represent i, j,k as the matrices

σ1 =

[
0 i
i 0

]
σ2 =

[
0 1
−1 0

]
σ3 =

[
i 0
0 −i

]
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(If you divide these by i they’re called the Pauli matrices in physics.) One reason to do this
is that they satisfy

[σ1, σ2] = −2σ3

and cyclic permutations of the indices. These are (up to some constants) the commutation
relations for the Lie algebras su2 ∼= so3. We know from earlier that Spin3 is a double cover
of SO(3), which means that they should have the same Lie algebra; we confirmed above that
there is an isomorphism of Lie algebras Cl03 = cl03

∼= so3.
Suppose you want to find all the representations of so3, in order to find the representations

of SO(3). so3 can be defined as the Lie algebra of skew-symmetric 3× 3 real matrices, and
this algebra has an obvious representation W = R3 by multiplication. It turns out that the
symmetric powers SymnW are all irreducible representations.

However, these are only half the representations. su2 ∼= so3, and su2 is an algebra of 2×2
matrices, so it has a two-dimensional representation V . It can be shown that the symmetric
powers of V are also all irreducible. Furthermore Sym2 V ∼= W , so these include the powers
of W . In fact, every irreducible representation of su2 is a symmetric power of V .

We wanted to find the representations of SO(3), but we’ve actually found more: the repre-
sentation Symn V of so3 lifts to a representation of SO(3) exactly when n is an even number.
The remaining odd representations do, however, lift to Spin3. Half of the representations lift
because Spin3 is a double cover of SO(3).

One perspective on Clifford algebras, spin groups, etc. is to make this construction sys-
tematic.

3.2 General case

Actually, what we really care about are representations of Spin.

Definition 3. The real spinor representation of Spinn is the representation

∆n : Spinn → GL(S) (1)

given by restricting an irreducible real representation S of Cl0n.

To think about these, it’s helpful to recall that

Clr,s ∼= Cl0r+1,s

and consequently that
Cln(C) ∼= Cl0n+1(C).

In particular, Spinn ⊂ Cl0n
∼= Cln−1, so the irreducible representations of Cln−1 are important

in constructing the irreps of Spinn. To construct them we’ll want to use the volume form:

Definition 4. Consider Cln with the underlying vector space spanned by e1, . . . , en. The
volume element is defined by

ω = e1 · · · en
and for Cln,C the complex volume element is

ωC = i
n+1
2 ω.

These are well-defined up a sign, which can be fixed by a choice of ordered basis.
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Proposition 2. For Cln,

1. ω = ωC exactly when n ≡ 7, 8 (mod 8)

2. If n is odd, ω and ωC are central

3. ω2 = 1 if n ≡ 3, 4 (mod 4)

4. (ωC)2 = 1 for all n

As a consequence, we have decompositions

Cln = Cl+n ⊕ Cl−n , n ≡ 3 (mod 4)

Cln,C = Cl+n,C ⊕ Cl−n,C, n odd

by using the projectors 1± ω:
Cl±n = (1± ω)Cln

and similarly for the complex case. Notice that the nontrivial direct sums occur exactly in
the dimensions where there are two irreps.

Example 2. Consider the case of Spin2 ⊂ Cl02
∼= Cl1 ∼= C. We can write Spin2 as the set

{a+ be1e2 : a2 + b2 = 1} ∼= S1. Cl2 as a whole is isomorphic to H. We want to see how this
representation restricts to Cl02. Observe that

(e1e2) · 1 = e1e2

(e1e2) · e1e2 = −1

(e1e2) · e1 = e2

(e1e2) · e2 = −e1

We see that the left Cl2-module Cl2 splits as a left Cl02-module into Cl02 and Cl12, which are
isomorphic modules of R-dimension two. In both cases, these are simply the action of S1 on
R2 by rotations. The representation ∆2 of Spin2 is the direct sum R2 ⊕ R2.

Proposition 3. Let W be an irreducible real representation of Cln for n = 4m + 3. Then
ω acts on W by either 1 or −1, and the corresponding representations are nonisomorphic.
Both possibilities occur.

The analagous statements hold for Cln,C and n odd.

Proof. ρ(ω2) = ρ(ω)2 = Id, so we can decomposeW into (±1)-eigenspaces. Since ω is central,
these eigenspaces are Cln-invariant, so one of them must be all of W by irreducibility. (That
is: apply Schur’s lemma.) To construct the representations in the first place, we can find
them as irreducible factors in the left action of Cln on Cl+n and Cl−n , respectively.

Example 3. Now consider Spin3 ⊂ Cl03
∼= Cl2 ∼= H. We saw previously that it consists of

the unit quaternions. As a whole, Cl3 is isomorphic to H ⊕ H, hence has two irreducible
representations, one for each factor.
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We didn’t actually prove this decomposition, but the easiest way is to use the volume
element ω = e1e2e3. 1 + ω = 1 + e1e2e3 has kernel

W− = spanR{1− e1e2e3, e1 + e2e3, e2 + e1e3, e3 − e1e2}

which is the same as saying that these are the −1-eigenvectors for ω. W+ is the kernel of
1 − ω, which is obtained by swapping the signs above. W+ and W− are the two distinct
irreducible representations of Cl3.

Recall that we already have a name for switching the signs: it’s the action of the auto-
morphism α of Cl3, which is defined by α(ei) = −ei. In particular, α sends W± to W∓, and
we can write Cl03 as the set of vectors of the form φ + α(φ) for φ ∈ Cl+3 . It follows that W+

and W− are isomorphic as representations of Cl03. Restricting either representation to Spin3

shows that ∆3 is the usual representation of Spin3
∼= S3 on R4 by unit quaternions. (We

aren’t focusing on Pin, but I’m pretty sure that as Pin3 representations W+ and W− are
distinct.)

Proposition 4. Let W be an irreducible real representation of Cln for n = 4m, and consider
the splitting

W = W+ ⊕W−

for W± = (1 ± ω)W . Each of the subspaces W± is invariant under Cl0n, and under the
isomorphism Cl0n

∼= Cln−1 these spaces correspond to the two distinct irreducible real repre-
sentations.

The analagous statements hold for Cln,C and n even.

Proof. To see that W± are invariant under Cl0n, notice that ω commutes with everything in
Cl0n: moving ω past an even product of generators contributes no overall sign. Under the
isomorphism Cln−1 ∼= Cl0n, the volume element ω′ = e1 · · · en−1 of Cln−1 goes to the volume
element ω of Cl0n, because

(e1en) · · · (en−1en) = (−1)
1
2
(n−1)(n−2)e1 · · · en−1en−1n = e1 · · · en

since
1

2
(n− 1)(n− 2) + (n− 2) =

n(n− 2)

2
is even when n = 4m.

Example 4. Cl4 is large enough that I don’t want to work out the example by hand, but it
has a single representation V of dimension 8 over R (given by the algebra of 2× 2 invertible
quaternionic matrices.) Because ω commutes with Cl04, the ±1-eigenspaces W± of ω are both
irreps when we restrict to Cl04. One way to see that they’re distinct is that ω ∈ Cl04. As a
consequence, the representation ∆4 of Spin4 has two distinct irreducible factors of dimension
4.

Proposition 5. When n ≡ 3 (mod 4) the definition of ∆n is independent of which irrep of
Cln is used. For n 6≡ 0 (mod 4) the representation ∆n is either irreducible or a direct sum
of two equivalent irreps; the second possibility occurs exactly when n ≡ 1, 2 (mod 8). In the
other cases, there is a decomposition

∆4m = ∆+
4m ⊕∆−4m

into distinct irreducible representations of Spin4m.
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In summary:

n ∆n

1 two identical factors
2 two identical factors
3 one factor, doesn’t depend on choice of irrep
4 two different factors
5 one factor
6 one factor
7 one factor, doesn’t depend on choice of irrep
8 two different factors

Proof. We have previously discussed several cases.

For completeness, we mention the complex case.

Definition 5. The complex spin representation of Spinn is the homomorphism

∆C
n : Spinn → GLC(S)

given by restricting an irreducible complex representation of Cln,C to Spinn ⊂ Cl0n ⊂ Cln,C.

When n is odd, there are two irreps of Cln,C to restrict, but the representation ∆C
n doesn’t

depend on which one we pick and is irreducible. When n is even, ∆C
2m
∼= ∆C+

2m ⊕ ∆C−
2m is a

direct sum of two distinct irreps.

3.3 Additional properties

There are some more facts that are worth mentioning, given time.

Proposition 6. The Lie subalgebra of cln (which is the vector space Cln with the Lie bracket
coming from the algebra multiplication) corresponding to the subgroup Spinn ⊂ Cl×n is

spinn = ∧2Rn

that is the image of the canonical embedding ∧2Rn ↪→ Cln.

Proof. For i < j, consider the curve

γ(y) = (ei cos t+ ej sin t)(−ei cos t+ ej sin t)

= (cos2 t− sin2 t) + 2eiej sin t cos t

= cos(2t) + sin(2t)eiej

It lies in Spinn and has γ′(0) = eiej, so spinn contains the image of ∧2Rn. By dimension-
counting we can conclude it’s exactly the image.

On reason to care about this: The Lie algebra of SOn is the space of skew-symmetric
transformations of Rn. Such maps are naturally given by elements of ∧2Rn, via

(v ∧ w)(x) = 〈v, x〉w − 〈w, x〉v

and we can therefore see directly that spinn
∼= son.
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Proposition 7. Let W be a real representation of Cln. Then there is an inner product
〈·, ·〉 on W invariant under the action of the generators of Cln. If W can be extended to a
complex or quaternionic representation, the product can be chosen to be invariant under that
extension.

Proof. Consider the Clifford group Fn ⊂ Cl×n generated by e1, . . . , en. It’s a finite group, and
the Clifford algebra is almost the group algebra RFn:

Cln ∼= RFn/〈−1 + 1〉

In particular, a representation of Cln is exactly a representation of Fn in which −1 acts by
− Id. (This is another reason why Clifford algebras are semisimple, at least I think.)

Thus, given our representationW , we can choose a K-invariant inner product (whereK =
R,C,H) and average over Fn to get an Fn-invariant, hence Cln-invariant inner product.

Proposition 8. When n ≡ 2, 6 (mod 8) ∆n is a unitary representation, and when n ≡ 3, 4, 5
(mod 8) it is symplectic.

Proof. ∆n comes from a representation of Cl0n
∼= Cln−1; when the representations of Cln−1 are

complex we get unitary representations and when they are quaternionic we get symplectic
ones. (It’s not quite clear to me why this is: the book doesn’t say more.)
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