Talls 16 Cliffical alg insoduction

Clifford Algebras

Def. Let V be a vector space over a field k with quadratic form q. Let $T(v) = \bigoplus_{n > 0} V^{\otimes n}$

be the tensor algebra of V and let Clq(V) be the ideal generated by $v \circ v + q(v) \cdot 1$ for all $v \in V$. Then the Clifford algebra is the quotient, $Cl(V,q) = \frac{T(V)}{Cl(V)}$

The <u>algebra</u> Cl(V,q) is generated by the rector space $V \subset Cl(V,q)$ (and 1), and subject to the relations,

 $v \cdot v = -q(v) \cdot 1$

for $v \in V$. If the characteristic of k is not 2, then for all $v, w \in V$ $v \cdot w + w \cdot v = -2q(v, w)$

ex. Compute (CL(R) with the usual inner product).

We have two generators, 1 and e_1 , and the relation $e_1^2 = -1$.

So Cl(R) ≈ C by the mapping,

e11-7 i

ex. Compute Cl(R2).

There are four generators: 1, e_1 , e_2 , e_1e_2 ; and the relations are $e_1^2 = -1$, $e_2^2 = -1$ and $(e_1e_2)^2 = -1$

- we e162+e2e1=0

e1e2=-e2e1

e1e2e1 = e2

 $(e_1e_2)^2 = -1$.

and so $CL(\mathbb{R}^2) \cong H$ (the quaternions) by the map, $1 \mapsto 1$ $e_1 \mapsto i$

ويسم إ

elez + k

Prop (the Universal Property) Let $f:V \to A$ be a linear map to an associative k-algebra with unit, such that

 $f(v) \cdot f(v) = -q(v) \cdot 1$

for all $v \in V$. Then f extends uniquely to a k-algebra homomorphism $f: Cl(V,q) \rightarrow A$. Furthermore, Cl(V,q) is the unique associative k-algebra with this property.

 \mathbb{Z}_2 -grading on CL(V,q)

Consider the automorphism of Cl(V,q), α , which extends the map $\alpha(v) = -v$ on V. There is a decomposition, even part

 $Cl(V,q) = Cl_0(V,q) \oplus Cl_1(V,q) \leftarrow odd$ part.

where $Cl_i(V,q) = \{ \varphi \in Cl(V,q) : \alpha(\varphi) = (-1)^i \varphi \}$ are the eigenspaces of α . In this way we can regard Cl(V,q) as a \mathbb{Z}_2 -graded algebra.

Prop. there is a canonical vector space isomorphism,

1×√~ cl(V,q)

compatible with the canonical filtrations. Caution: NOT an algebra isomorphism.

Prop. Let $V=V_1 \oplus V_2$ be a q-orthogonal decomposition. Then there is a natural isomorphism of Clifford algebras $Cl(V,q) \longrightarrow Cl(V_1,q_1) \otimes Cl(V_2,q_2)$

where qi denotes the restriction of q to V_i and where $\hat{\otimes}$ denotes the \mathbb{Z}_2 -graded tensor product.

The Transpose

The tensor algebra, T(V), has an involution given by, $v_1 \otimes \cdots \otimes v_r \mapsto v_r \otimes \cdots \otimes v_1$. This map preserves the ideal and descends to a map, $1)^t : CL(V,a) \to CL(V,a)$

called the transpose. This is an antiautomorphism, i.e. $(\varphi \psi)^t = \psi^t \varphi^t$.

The Algebras Cln and Clr,s

We define the algebra $Cl_{r,s} = Cl(V,q)$ where $V = IR^{r+s}$ and

$$q(x) = x_1^2 + \dots + x_r^2 - x_{r+1}^2 - \dots - x_{r+s}^2$$

We denote the special cases, $Cl_n = Cl_{n,0}$ and $Cl_n^* = Cl_{0,n}$.

Prop. Let e1,..., er+s be an orthonormal basis of Rrs. Then Clr,s is generaled (as an algebra) by e1,..., er+s Subject to the relations,

$$e_i e_j + e_j e_i = \begin{cases} -2\delta_{ij} & \text{if } i < r \\ 2\delta_{ij} & \text{if } i > r \end{cases}$$

Prop. There is an isomorphism,

$$Cl_{r,s} \cong \underbrace{U_1 \hat{\otimes} \cdots \hat{\otimes} U_1 \hat{\otimes} \underbrace{U_1^* \hat{\otimes} \cdots \hat{\otimes} U_1^*}_{s \text{ times}}$$

which follows inductively from the previously mentioned proposition.

We already computed $Cl_1 = Cl(\mathbb{R})$ and $Cl_2 = Cl(\mathbb{R}^2)$. Let's compute a few more examples.

ex. Compute U1 = Clo,1.

Two generators: 1, e, and the relation e= -1.

Thus it is clear that $U_1^{*2}R \oplus R$.

ex. Compute U2 = Clo,2.

We have the generators: 1, e₁, e₂, e₁e₂ and the relations, $e_1^2=1$, $e_2^2=1$ and $e_1e_2=-e_2e_1$ $(e_1e_2)^2=-1$

Consider the mapping: $1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $e_1 \mapsto \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $e_2 \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $e_1 e_2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

So we see that $Cl_2^* \cong \mathbb{R}(2)$.

ex. Compute Cl1,1.

Generators: 1, e₁, e₂, e₁e₂ and relations: $e_1^2 = -1$, $e_2^2 = -1$, and $e_1e_2 = -e_2e_1 \Rightarrow (e_1e_2)^2 = 1$.

Following the example above it is clear that $Cl_{1,1} \cong \mathbb{R}(2)$.

Thm. There is an algebra isomorphism $U_{r,s} \cong U_{rn,s}^{\circ}$ for all r and s.

Proof.

Choose an orthogonal basis $\{e_1, ..., e_{r+s+1}\}$ of \mathbb{R}^{r+s+1} such that $q(e_i)=1$ for $1 \le i \le r+1$ and $q(e_i)=-1$ for $r+1 \le i \le r+s+1$.

Let $\mathbb{R}^{r+s} = \text{span}\{e_i \mid i \neq r+1\}$ and define a map, $f: \mathbb{R}^{r+s} \to \mathcal{U}_{r+1,s}^0$ by setting $f(e_i) = e_{r+1}e_i$ for i = r+1 (and extend linearly).

For $x = \sum_{i \neq r+1} x_i e_i$ we have,

$$f(x)^{2} = \sum_{i,j} x_{i} x_{j} e_{r+1} e_{i} e_{r+1} e_{j}$$

$$= \sum_{i,j} x_{i} x_{j} e_{i} e_{j} = x \cdot x = -q(x) \cdot 1.$$

It follows from the universal property that f extends to an algebra homomorphism, $\tilde{f}: \mathcal{C}l_{r+s} \to \mathcal{C}l_{r+l}^{\circ}$,s

Checking \tilde{f} on a linear basis shows that \tilde{f} is in fact an isomorphism.

Thm. There are isomorphisms,

$$U_{n,0} \otimes U_{0,2} \cong U_{0,n+2}$$
 $U_{0,n} \otimes U_{2,0} \cong U_{n+2,0}$
 $U_{r,s} \otimes U_{1,1} \cong U_{r+1,s+1}$

for all n,r,s > 1.

Proof.

Let's prove only the first case above, as the others follow in a similar manner. Let $\{e_1,...,e_{n+2}\}$ be an orthonormal basis of \mathbb{R}^{n+2} with inner product $q(x) = -||x||^2$. Let $e'_1,...,e'_n$ be the standard basis of $Cl_{n,o}$ and e'_1,e''_2 be the standard basis of $Cl_{n,o}$ and e'_1,e''_2 be the standard basis of $Cl_{0,2}$. Define a map $f: \mathbb{R}^{n+2} \to Cl_{n,o} \otimes Cl_{0,2}$ by

$$f(e_i) = \begin{cases} e_i' \otimes e_i' e_i'' & \text{for } 1 \leq i \leq n \\ 1 \otimes e_{i-n}'' & \text{for } i = n+1, n+2 \end{cases}$$

land extend linearly). It can be shown that $f(x)^2 = ||x||^2 \cdot 1 \otimes 1$, so by the universal property f extends to an algebra homomorphism

 $f: Cl_{0,n+2} \rightarrow Cl_{n,0} \otimes Cl_{0,2}$. Since \tilde{f} maps anto a set of generators it is surjective and since $\dim Cl_{0,n+2} = \dim Cl_{n,0} \otimes Cl_{0,2}$, the map must be an isomorphism.

Thm. For all n>0, there are periodicity isomorphisms,

 $Cl_{n+8,0} \cong Cl_{n,0} \otimes Cl_{8,0}$ $Cl_{0,n+8} \cong Cl_{0,n} \otimes Cl_{0,8}$ $Cl_{n+2} \cong Cl_{n} \otimes Cl_{2}$ $Cl_{n} = Cl_{n} \otimes Cl_{2}$ $= Cl_{n} \otimes Cl_{2}$