Warm up. $\log _{3}(x+5)+\log _{3}(x-1)=2$

$$
\begin{aligned}
& \log _{3}[(x+5)(x-1)]=2 \\
& 3^{2}=(x+5)(x-1) \\
& 9=x^{2}+4 x-5
\end{aligned}
$$

$0=x^{2}+4 x-14$ (*) use the quadratic formula

$$
x=\frac{-4 \pm \sqrt{16+56}}{2}=-2 \pm 3 \sqrt{2}
$$

check the validity of these solutions

$$
\begin{aligned}
& -2+3 \sqrt{2}-1=-3+3 \sqrt{2}>0 \\
& -2+3 \sqrt{2}+5=3+3 \sqrt{2}>0 \\
& -2-3 \sqrt{2}-1=-3-3 \sqrt{2}<0 \text { NOT VALID }
\end{aligned}
$$

$x=-2+3 \sqrt{2}$ is the only solution

Logarithm of a quotient. (our last property)

$$
\begin{aligned}
& \log _{b}\left(\frac{x}{y}\right)=\log _{b}\left(x \cdot y^{-1}\right) \quad \log _{\text {product }} \\
& =\log _{b}(x)+\log _{b}\left(y^{-1}\right) \\
& =\log _{b}(x)-\log _{b}(y)^{\log _{\text {of } a n}} \\
& \log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)
\end{aligned}
$$

Ex. $\log _{2}(x+3)-\log _{2}(x+1)=1$

$$
\begin{gathered}
\log _{2}\left(\frac{x+3}{x+1}\right)=1 \\
\frac{x+3}{x+1}=2^{1}=2 \\
x+3=2(x+1) \\
x+3=2 x+2
\end{gathered}
$$

$1=x$ (*) Check its valid! It is!
\qquad

1. Solve for x.
(a) $\log _{5} 25=x$
$\begin{array}{ll}\text { (a) } x=2 & \text { (b) } x=-4\end{array}$
(b) $\log _{3} \frac{1}{81}=x$
(c) $\log _{2} x=-3$
(c) $x=\frac{1}{8} \quad$ (d) $x=\frac{1}{3}$
(d) $\log _{9} x=-\frac{1}{2}$
(e) $\log _{x} 64=3$
(e) $x=4$
2. Write the following expressions in terms of $\log x, \log y$, and $\log z$.
(a) $\log \left(\frac{x y^{3}}{z}\right)$
(a) $\log x+3 \log y-\log z$
(b) $\log (x \sqrt[3]{x y})$
(9) $\log \left(\sqrt[2]{\sqrt[2 x]{\sqrt{x}})}\right.$ (b) $\frac{4}{3} \log x+\frac{1}{3} \log y$
(c) $3 \log z+\frac{1}{2} \log x-\frac{1}{4} \log y$
3. Solve the following equations.
(a) $2 \log x=\log 2+\log (3 x-4)$
(a) $x=2,4$
(b) $\log _{5} x+\log _{5}(x-1)=\log _{5}(4 x)$
(c) $\log _{3}(x+25)-\log _{3}(x-1)=3$
(b) $x=5$
(d) $\log _{2}(x-2)+\log _{2}(x+1)=2$
(c) $x=2$
(d) $x=3$
