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Preliminaries

Consider a one dimensional quantum mechanic system with
potential V/(qg(t)). The action function on the space of paths is,

se)= [ (3407 - Via(0) a

where 7 : [0, T] = R, t — q(t) is a path.
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Preliminaries

Consider a one dimensional quantum mechanic system with
potential V/(qg(t)). The action function on the space of paths is,

se)= [ (3407 - Via(0) a

where v : [0, T] = R, t — q(t) is a path. Let v. = qc(t) satisfy
the Euler Lagrange equations,

mc(t) = _V/(qc(t))
with the boundary conditions,

qc(O) =dq (]C(O) = %
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Preliminaries

Taking the second variation of the action at the critical point gives,

;
5(7e) = /0 (6a)A(bq)dt

where A is the operator

d2 1

A= Tdr EV”(Qc(t))

acting on the domain

D(A) = {y(t) € W22(0,T) : y(0) = y(T) = 0}

Meredith Shea A generalized Gelfand-Yaglom formula



The Gelfand-Yaglom formula Preliminaries
A discrete generalized Gelfand-Yaglom formula The Gelfand-Yaglom formula
Lattice regularization A generalized action functional

The Gelfand-Yaglom formula

Theorem (The Gelfand-Yaglom formula)
Let A and q.(t) be as described, then

dq.(T) 1

where det - A denotes the (-regularized determinant of A.
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The Gelfand-Yaglom formula

The action written in the Hamiltonian formalism is,
T
Ef / : 1 2
SHiq,q4) = i p(t)a(t) = 5-p()° + V(a(1)) ) dt

where 5 : [0, T] = T*R, t — (q(t), p(t)), ¢ = q(0), and
q =q(T).
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The Gelfand-Yaglom formula

The action written in the Hamiltonian formalism is,
T
Ef / : 1 2
SHiq,q4) = i p(t)a(t) = 5-p()° + V(a(1)) ) dt

where 5 : [0, T] = T*R, t — (q(t), p(t)), ¢ = q(0), and
q =q(T).

For the operator A and the action functional described above,

. -1
(85@qq)> ~ L getea
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A generalized action functional

Consider the generalized Hamiltonian action functional,

}
§(5: b1, by) = /0 (P(8)a(t) — H(p(t), a(£))) de+hi(q, b)—fa(d', bz)

where H is any twice differentiable Hamiltonian (for now) and f
and f, define the Lagrangian submanifolds

_afl 1_% /
p—aq(q,bl) p—aq,(q,bz)

Critical points of the action are flow lines of the Hamiltonian
vector field that connect the two submanifolds in time T.
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The Hamilton-Jacobi operator

The Hamilton-Jacobi operator, A, that appears in the second
variation of the action at the critical point has the form,

82H d 9%H
A _ ( - (Pa qc) gt dpdq(pa qc))

2
_% aapglq(pC? qC) 3q2 (pm CIc)

and has the domain,

D(A) = {(x.y) : x.y € W22(0, T), x(0) = a1y(0), x(T) = ay(T)}
where we use the shorthand notation,

9%f 5%t
ay = qu(qc,bl) a = g2 5(qz, b2)
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Question. Is there a similar Gelfand-Yaglom type formula for the
action S(fyc, b1, bp) and the operator A?
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Preliminaries

The Gelfand-Yaglom formula

A generalized action functional

Question. Is there a similar Gelfand-Yaglom type formula for the
action S(fyc, b1, bp) and the operator A?
Answer. Sort of
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Motivating question

Question. Is there a similar Gelfand- Yaglom type formula for the
action 5(%, b1, bp) and the operator A?
Answer. Sort of...

@ In the discrete setting there are no issues, so that is where we
will start.
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Motivating question

Question. Is there a similar Gelfand- Yaglom type formula for the
action 5(%, b1, bp) and the operator A?
Answer. Sort of...

@ In the discrete setting there are no issues, so that is where we
will start.

@ |In the continuous setting the operator A causes difficulties,
but we have no problems when using A.
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Motivating question

Question. Is there a similar Gelfand- Yaglom type formula for the
action 5(%, b1, bp) and the operator A?
Answer. Sort of...
@ In the discrete setting there are no issues, so that is where we
will start.
@ |In the continuous setting the operator A causes difficulties,
but we have no problems when using A.
© How does the discrete case compare to the continuous one in
the continuum limit?
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The discrete action

q1 q3

P1 @
P P3
as
Pa 5 do

aa

Figure: A discretization of a path into N = 6 position vectors and
N —1 =5 momentum vectors.
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The discrete action

q1 q3

P1 @
P p3
as
Pa 5 do

aa

Figure: A discretization of a path into N = 6 position vectors and
N —1 =5 momentum vectors.

In the one dimensional case we propose the discrete action
functional,

N-1 N-1
Sd(Fai b1, b2) = > pi(@ir1—ai)— Y H(pi, ai))—f(an, b2)+fi(q1, br)
i=1 i=1
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The discrete set up
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The discrete analog of the operator A is the (2N — 1) x (2N — 1)
matrix operator with block form,

~ (D1 Dy
in=(py o)
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The discrete Hamilton-Jacobi operator
The discrete analog of the operator A is the (2N — 1) x (2N — 1)

matrix operator with block form,
i Dy D,
N pr—
D3 Dy
2
dp — ng
_H Y oH
7 - 0q3
Dy = - D, =
_ 8?H 9H
Py _ﬁqfv_l
—a
PH
1= Op10q1 1
D, = D] =
_1— 9?H
Ipn—199n-1

A generalized Gelfand-Yaglom formula
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The discrete set up
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In the discrete setting, the critical path solves a discrete version of

Hamilton’s equations
oH oH
gi+1—qi — 5—(Pi,qi)) =0, pj—pi-1+ 5—-(pi,qi)) =0
+ ap/( ) aq’( )

and the same Lagrangian boundary conditions as earlier.
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In the discrete setting, the critical path solves a discrete version of

Hamilton’s equations
oH oH
gi+1—qi — -—(pi»qi) =0, pi—pi-1+ -—(pi,q)) =0
+ ap/( ) aq’( )

and the same Lagrangian boundary conditions as earlier.

Theorem

For the discrete action functional at the critical path,

§d(’~7d,c; b1, by) and discrete Hamilton-Jacobi operator, Ay, the
following Gelfand-Yaglom type formula holds (in the one
dimensional case)

P 8%f(q1,b: ?H (g, b N—
9?54(Fd,c; b1, b2) _ alq(;gbll) : azq(:gb;) . Hl (_32H(Piaqi) _ 1>

Ob10by det Ay opi0q;

i=1
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Proof outline

O?H(pi, qi)
opi0q;

For this proof we assume 1 + = 0 for all i. The proof

follows the steps...
@ Compute the mixed (boundary) derivative of the action at the
critical value,

PS(3g.ci b, b))  0%h Oq

Ob10by " 9qdby Oby
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Proof outline

O?H(pi, qi)
opi0q;

For this proof we assume 1 + = 0 for all i. The proof

follows the steps...
@ Compute the mixed (boundary) derivative of the action at the
critical value,

P8(Fa.cibi, b)) 9% Oq

Ob10by " 9qdby Oby

@ Take derivatives of the Hamilton’s equations with respect to
b, and write the (linear) system as a recursive system.

0qi+1 _%_ 82H( ' )%_ 9?*H ( )6q, _ 0
dpi  9pi-1 O’H dq; 9?H opi 0

8[)2 8b2 8q,2( laql)ab +8q,3p,(p”q')37bz
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Proof outline

@ Express the determinant of Ay as a recursive system, using
the fact that,

det Ay = det Dy det(Ds — D3D; 1 Ds)

and the matrix Dy — D3D1_1D2 is tri-diagonal.
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Proof outline

@ Express the determinant of Ay as a recursive system, using
the fact that,

det Ay = det Dy det(Ds — D3D; 1 Ds)

and the matrix Dy — D3D; ' D, is tri-diagonal.
© Recognize these systems are almost the same after gauge
transformation.

The same steps apply in the n-dimensional case as well.
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Specializations

For the rest of this talk we will make a few assumptions...

Q H(pi,qi) = ﬁp? + V(q;) where V is a twice differentiable
function.

Q@ N is odd.
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Specializations

For the rest of this talk we will make a few assumptions...
Q H(pi,qi) = ﬁp? + V(q;) where V is a twice differentiable
function.
@ N is odd.

And so the statement from the theorem simplifies to,

~ ~ 82f(q 7b )82)62(q 7b2)
254(Fd,ci b, b2)  “Haiobr . Dandbs

8b16b2 N det AN
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Convergence of Ay

The operator Ay weakly converges to the operator A.

To prove this theorem we need to be careful with epsilons (as
opposed to letting e = 1).

Using the discrete generalized Gelfand-Yaglom formula we have,

8 (q1,b1) 0*H(qn,b2)
0q10b; 0qnOby
9254(54,cib1,b2)
0b10by

lim det Ay =
N—oco N
so the limit is finite and well-defined™.
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Next goal. Ideally we want a generalized Gelfand-Yaglom formula
for det¢ A, so that we may compare it to limy_,, det Ay.
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Next goal...

Next goal. Ideally we want a generalized Gelfand-Yaglom formula
for det¢ A, so that we may compare it to limy_,, det Ay.

Instead, we computed a generalized (continuous) Gelfand-Yaglom
formula using A. Recall,

? 1
A= —F — Evll(qc(t))

and the boundary conditions take the form,
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Generalized Gelfand-Yaglom formula

2
Let L = —% + u(t) where u(t) € CY([0, T],R) and

D(1) = {y(r) € W22(0, T) : j(0) = Zy(0), (T) = 2y(T)}

The (-regularized determinant of the operator L satisfies the
following equation,

. a
det¢ L= y1(T) ~ ~y(T)

where y1(t) is the solution to the initial value problem,

—j(t) + u(t)y(t) = 0, y(0) = 1, y(0) = =
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Generalized Gelfand-Yaglom formula

The proof is very similar to the proof of the original
Gelfand-Yaglom formula. The outline goes,

@ Consider two solutions of the equation —y + u(t)y = Ay with
boundary conditions,

@ »(0) =1, y1(0) = a1/m
@ yo(T) =1 y(T) =az/m
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Generalized Gelfand-Yaglom formula

The proof is very similar to the proof of the original
Gelfand-Yaglom formula. The outline goes,

@ Consider two solutions of the equation —y + u(t)y = Ay with
boundary conditions,

@ »(0) =1, y1(0) = a1/m
@ yo(T) =1 y(T) =az/m

@ Use the two solutions to simplify the expression Tr R},
therefore simplifying the expression

logdet (L — Al) = =TrR)

to
logdet (L — M) =C ()71(T) - %3)/1(7-))
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Generalized Gelfand-Yaglom formula

The proof is very similar to the proof of the original
Gelfand-Yaglom formula. The outline goes,

@ Consider two solutions of the equation —y + u(t)y = Ay with
boundary conditions,
@ y1(0) =1 y1(0)=a/m
@ »2(T)=1,y(T)=ay/m
@ Use the two solutions to simplify the expression Tr R},
therefore simplifying the expression

logdet (L — Al) = =TrR)
to

logdet (L — M) =C ()71(T) - iﬁjh(T))

© Using asymptotics compute that C = 1.
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Generalized Gelfand-Yaglom formula

We can put this in the context of the operator A to get,

For the operator A with mixed boundary conditions we have the
generalized Gelfand-Yaglom formula,

_ 94c(T) _ a29q.(T)
detcA— aq = aq
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Generalized Gelfand-Yaglom formula

We can put this in the context of the operator A to get,

For the operator A with mixed boundary conditions we have the
generalized Gelfand-Yaglom formula,

_ 94c(T) _ a29q.(T)
detgA— aq = aq

After taking some derivative we get,

= 0%f(q1,b1) 9%H(qn,b2)
O?S(e; b1, b2)  “Bqiob  Dandbs

0b10bs N mdetC A
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So far we have,

PS4(Fd.c; br, bo) _

9?f(qu,b1) 8% (qn,b2)
_ _0q10b
0b10by
and

dqnOby

~ 8%f1(qy1,b1) O%F; N
aZS(FYCv b17 b2) _ 62(1%1b11) 2(qN )
0b10b;

dqnOby
mdet ¢ A
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Continuous generalized Gelfand-Yaglom formula
The operator Ay
Lattice regularization

So far we have,

?54(3d.¢; b1, bo) B

0% (q1,b1) 8%F(gn,b2)

0q10b; oqnOby

and

0b10by limy_s oo det Ay

. . 82 (qu,b1) 8 fa(qn,bo
025 (5¢; b1, ba) _ qu(ﬂdlbll) 8211(,\73’[)2 )

0b10by mdet: A

One would hope that limpy_, det /Z\N = det, A, so we would

suspect

detCA = mdet A
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The operator Ay

Well we have this* in the discrete case...

The determinants of the discrete operators Ay and Ay satisfy the
relation

det Ay = (—=1)V"Imdet Ay
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The operator Ay

Well we have this* in the discrete case...

The determinants of the discrete operators Ay and Ay satisfy the
relation

det Ay = (—=1)V"Imdet Ay

The operator Ay has the form,

41— v (qe(tr)) -1 0 0

A — ~1 2—-Lv(q(t)) -1 0

4 0 -1 2-Lvi(g(t)) -1
0 0 -1 -241
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The operator Ay

Well we have this* in the discrete case...

The determinants of the discrete operators Ay and AN satisfy the
relation

det Ay = (—=1)V"Imdet Ay

The operator Ay has the form,

41— v (qe(tr)) -1 0 0

A — ~1 2—-Lv(q(t)) -1 0

4 0 -1 2-Lvi(g(t)) -1
0 0 -1 -241

This theorem is then obvious once you observe,
mAy = Dy — D3sD; D,
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The operator Ay

We also have,

The operator Ay weakly converges to the operator A.

As before, the limit is well-defined (no asterisk!) and finite

9*(q1,b1) 0*h(qn,b2)
lim Ay = 30[18!31 _ oqnOby
N—o00 m325d(7d,c?b1,b2)
0b10by

Obviously, one has to be careful about epsilons to prove this.
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Lattice regularization

Since the determinant of Ay and AN exist in the continuum limit
and converge to A and A, respectively, we define,

We define the lattice regularized determinants of A and A by,

det,.c A= |im detA
= N—oo N

detregA: lim detAN

N—oo
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Lattice regularization

Since the determinant of Ay and AN exist in the continuum limit
and converge to A and A, respectively, we define,

Definition

We define the lattice regularized determinants of A and A by,

det,.c A= |im detA
= N—oo N

detregA: lim detAN

N—oo

And we see from everything that,

det reg A= detC A
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this is true.

© We wanted (and never got) det,eg A = det¢ A, but | suspect
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Concluding remarks

© We wanted (and never got) det,eg A = det¢ A, but | suspect
this is true.

@ Something more complex is going on in the case of mixed
second derivatives of H, which probably warrants more
investigation.
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Concluding remarks

© We wanted (and never got) det,eg A = det¢ A, but | suspect
this is true.

@ Something more complex is going on in the case of mixed
second derivatives of H, which probably warrants more
investigation.

© Thank you for listening!
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