A generalized Gelfand-Yaglom formula

Meredith Shea

UC Berkeley
December 7, 2020

Preliminaries

Consider a one dimensional quantum mechanic system with potential $V(q(t))$. The action function on the space of paths is,

$$
S(\gamma)=\int_{0}^{T}\left(\frac{m}{2} \dot{q}(t)^{2}-V(q(t))\right) d t
$$

where $\gamma:[0, T] \rightarrow \mathbb{R}, t \mapsto q(t)$ is a path.

Preliminaries

Consider a one dimensional quantum mechanic system with potential $V(q(t))$. The action function on the space of paths is,

$$
S(\gamma)=\int_{0}^{T}\left(\frac{m}{2} \dot{q}(t)^{2}-V(q(t))\right) d t
$$

where $\gamma:[0, T] \rightarrow \mathbb{R}, t \mapsto q(t)$ is a path. Let $\gamma_{c}=q_{c}(t)$ satisfy the Euler Lagrange equations,

$$
m \ddot{q}_{c}(t)=-V^{\prime}\left(q_{c}(t)\right)
$$

with the boundary conditions,

$$
q_{c}(0)=q \quad \dot{q}_{c}(0)=\frac{p}{m}
$$

Preliminaries

Taking the second variation of the action at the critical point gives,

$$
\delta^{2} S\left(\gamma_{c}\right)=\int_{0}^{T}(\delta q) A(\delta q) d t
$$

where A is the operator

$$
A=-\frac{d^{2}}{d t^{2}}-\frac{1}{m} V^{\prime \prime}\left(q_{c}(t)\right)
$$

acting on the domain

$$
D(A)=\left\{y(t) \in W^{2,2}(0, T): y(0)=y(T)=0\right\}
$$

The Gelfand-Yaglom formula

Theorem (The Gelfand-Yaglom formula)

Let A and $q_{c}(t)$ be as described, then

$$
\frac{\partial q_{c}(T)}{\partial p}=\frac{1}{2 m} \operatorname{det}_{\zeta} A
$$

where $\operatorname{det}{ }_{\zeta} A$ denotes the ζ-regularized determinant of A.

The Gelfand-Yaglom formula

The action written in the Hamiltonian formalism is,

$$
\tilde{S}\left(\tilde{\gamma} ; q, q^{\prime}\right)=\int_{0}^{T}\left(p(t) \dot{q}(t)-\frac{1}{2 m} p(t)^{2}+V(q(t))\right) d t
$$

where $\tilde{\gamma}:[0, T] \rightarrow T^{*} \mathbb{R}, t \mapsto(q(t), p(t)), q=q(0)$, and $q^{\prime}=q(T)$.

The Gelfand-Yaglom formula

The action written in the Hamiltonian formalism is,

$$
\tilde{S}\left(\tilde{\gamma} ; q, q^{\prime}\right)=\int_{0}^{T}\left(p(t) \dot{q}(t)-\frac{1}{2 m} p(t)^{2}+V(q(t))\right) d t
$$

where $\tilde{\gamma}:[0, T] \rightarrow T^{*} \mathbb{R}, t \mapsto(q(t), p(t)), q=q(0)$, and $q^{\prime}=q(T)$.

Corollary

For the operator A and the action functional described above,

$$
\left(\frac{\partial \tilde{S}\left(\tilde{\gamma}_{c} ; q, q^{\prime}\right)}{\partial q \partial q^{\prime}}\right)^{-1}=\frac{1}{2 m} \operatorname{det}_{\zeta} A
$$

Preliminaries

A generalized action functional

Consider the generalized Hamiltonian action functional,
$\tilde{S}\left(\tilde{\gamma} ; b_{1}, b_{2}\right)=\int_{0}^{T}(p(t) \dot{q}(t)-H(p(t), q(t))) d t+f_{1}\left(q, b_{1}\right)-f_{2}\left(q^{\prime}, b_{2}\right)$
where H is any twice differentiable Hamiltonian (for now) and f_{1} and f_{2} define the Lagrangian submanifolds

$$
p=\frac{\partial f_{1}}{\partial q}\left(q, b_{1}\right) \quad p^{\prime}=\frac{\partial f_{2}}{\partial q^{\prime}}\left(q^{\prime}, b_{2}\right)
$$

Critical points of the action are flow lines of the Hamiltonian vector field that connect the two submanifolds in time T.

The Hamilton-Jacobi operator

The Hamilton-Jacobi operator, \tilde{A}, that appears in the second variation of the action at the critical point has the form,

$$
\tilde{A}=\left(\begin{array}{cc}
-\frac{\partial^{2} H}{\partial p^{2}}\left(p_{c}, q_{c}\right) & \frac{d}{d t}-\frac{\partial^{2} H}{\partial p \partial q}\left(p_{c}, q_{c}\right) \\
-\frac{\partial^{2} H}{d t}-\frac{\partial^{2}}{\partial p \partial q}\left(p_{c}, q_{c}\right) & -\frac{\partial^{2} H}{\partial q^{2}}\left(p_{c}, q_{c}\right)
\end{array}\right)
$$

and has the domain,

$$
D(\tilde{A})=\left\{(x, y): x, y \in W^{2,2}(0, T), x(0)=a_{1} y(0), x(T)=a_{2} y(T)\right\}
$$

where we use the shorthand notation,

$$
a_{1}=\frac{\partial^{2} f_{1}}{\partial q^{2}}\left(q_{c}, b_{1}\right) \quad a_{2}=\frac{\partial^{2} f_{2}}{\partial q^{\prime 2}}\left(q_{c}^{\prime}, b_{2}\right)
$$

Motivating question

Question. Is there a similar Gelfand-Yaglom type formula for the action $\tilde{S}\left(\tilde{\gamma}_{c} ; b_{1}, b_{2}\right)$ and the operator \tilde{A} ?

Motivating question

Question. Is there a similar Gelfand-Yaglom type formula for the action $\tilde{S}\left(\tilde{\gamma}_{c} ; b_{1}, b_{2}\right)$ and the operator \tilde{A} ?
Answer. Sort of...

Motivating question

Question. Is there a similar Gelfand-Yaglom type formula for the action $\tilde{S}\left(\tilde{\gamma}_{c} ; b_{1}, b_{2}\right)$ and the operator \tilde{A} ?
Answer. Sort of...
(1) In the discrete setting there are no issues, so that is where we will start.

Motivating question

Question. Is there a similar Gelfand-Yaglom type formula for the action $\tilde{S}\left(\tilde{\gamma}_{c} ; b_{1}, b_{2}\right)$ and the operator \tilde{A} ?
Answer. Sort of...
(1) In the discrete setting there are no issues, so that is where we will start.
(2) In the continuous setting the operator \tilde{A} causes difficulties, but we have no problems when using A.

Motivating question

Question. Is there a similar Gelfand-Yaglom type formula for the action $\tilde{S}\left(\tilde{\gamma}_{c} ; b_{1}, b_{2}\right)$ and the operator \tilde{A} ?
Answer. Sort of...
(1) In the discrete setting there are no issues, so that is where we will start.
(2) In the continuous setting the operator \tilde{A} causes difficulties, but we have no problems when using A.
(3) How does the discrete case compare to the continuous one in the continuum limit?

The discrete action

Figure: A discretization of a path into $N=6$ position vectors and $N-1=5$ momentum vectors.

The discrete action

Figure: A discretization of a path into $N=6$ position vectors and $N-1=5$ momentum vectors.

In the one dimensional case we propose the discrete action functional,
$\tilde{S}_{d}\left(\tilde{\gamma}_{d} ; b_{1}, b_{2}\right)=\sum_{i=1}^{N-1} p_{i}\left(q_{i+1}-q_{i}\right)-\sum_{i=1}^{N-1} H\left(p_{i}, q_{i}\right)-f_{2}\left(q_{N}, b_{2}\right)+f_{1}\left(q_{1}, b_{1}\right)$

The discrete Hamilton-Jacobi operator

The discrete analog of the operator \tilde{A} is the $(2 N-1) \times(2 N-1)$ matrix operator with block form,

$$
\tilde{A}_{N}=\left(\begin{array}{ll}
D_{1} & D_{2} \\
D_{3} & D_{4}
\end{array}\right)
$$

The discrete Hamilton-Jacobi operator

The discrete analog of the operator \tilde{A} is the $(2 N-1) \times(2 N-1)$ matrix operator with block form,

$$
\begin{aligned}
& \tilde{A}_{N}=\left(\begin{array}{ll}
D_{1} & D_{2} \\
D_{3} & D_{4}
\end{array}\right) \\
& D_{1}=\left(\begin{array}{cccc}
-\frac{\partial^{2} H}{\partial p_{1}^{2}} & & \\
& \ddots & \\
& & -\frac{\partial^{2} H}{\partial p_{N-1}^{2}}
\end{array}\right) \quad D_{4}=\left(\begin{array}{lllll}
a_{1}-\frac{\partial^{2} H}{\partial q_{1}^{2}} & & & \\
& -\frac{\partial^{2} H}{\partial q_{2}^{2}} & & & \\
& & \ddots & & \\
& & & -\frac{\partial^{2} H}{\partial q_{N-1}^{2}} & \\
& & & & \\
& & & &
\end{array}\right) \\
& D_{2}=D_{3}^{T}=\left(\begin{array}{ccccc}
-1-\frac{\partial^{2} H}{\partial p_{1} \partial q_{1}} & 1 & & & \\
& & \ddots & & \\
& & \ddots & 1 & \\
& & & -1-\frac{\partial^{2} H}{\partial p_{N-1} \partial q_{N-1}} & 1
\end{array}\right)
\end{aligned}
$$

Discrete Gelfand-Yaglom theorem

In the discrete setting, the critical path solves a discrete version of Hamilton's equations

$$
q_{i+1}-q_{i}-\frac{\partial H}{\partial p_{i}}\left(p_{i}, q_{i}\right)=0, \quad p_{i}-p_{i-1}+\frac{\partial H}{\partial q_{i}}\left(p_{i}, q_{i}\right)=0
$$ and the same Lagrangian boundary conditions as earlier.

Discrete Gelfand-Yaglom theorem

In the discrete setting, the critical path solves a discrete version of Hamilton's equations

$$
q_{i+1}-q_{i}-\frac{\partial H}{\partial p_{i}}\left(p_{i}, q_{i}\right)=0, \quad p_{i}-p_{i-1}+\frac{\partial H}{\partial q_{i}}\left(p_{i}, q_{i}\right)=0
$$

and the same Lagrangian boundary conditions as earlier.

Theorem

For the discrete action functional at the critical path, $\tilde{S}_{d}\left(\tilde{\gamma}_{d, c} ; b_{1}, b_{2}\right)$ and discrete Hamilton-Jacobi operator, \tilde{A}_{N}, the following Gelfand-Yaglom type formula holds (in the one dimensional case)

$$
\frac{\partial^{2} \tilde{S}_{d}\left(\tilde{\gamma}_{d, c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}=\frac{\frac{\partial^{2} f_{1}\left(q_{1}, b_{1}\right)}{\partial q_{1} \partial b_{1}} \cdot \frac{\partial^{2} f_{2}\left(q_{N}, b_{2}\right)}{\partial q_{N} \partial b_{2}}}{\operatorname{det} \tilde{A}_{N}} \cdot \prod_{i=1}^{N-1}\left(-\frac{\partial^{2} H\left(p_{i}, q_{i}\right)}{\partial p_{i} \partial q_{i}}-1\right)
$$

Proof outline

For this proof we assume $1+\frac{\partial^{2} H\left(p_{i}, q_{i}\right)}{\partial p_{i} \partial q_{i}} \neq 0$ for all i. The proof follows the steps...

Proof outline

For this proof we assume $1+\frac{\partial^{2} H\left(p_{i}, q_{i}\right)}{\partial p_{i} \partial q_{i}} \neq 0$ for all i. The proof follows the steps...
(1) Compute the mixed (boundary) derivative of the action at the critical value,

$$
\frac{\partial^{2} \tilde{S}\left(\tilde{\gamma}_{d, c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}=\frac{\partial^{2} f_{1}}{\partial q \partial b_{1}} \frac{\partial q}{\partial b_{2}}
$$

Proof outline

For this proof we assume $1+\frac{\partial^{2} H\left(p_{i}, q_{i}\right)}{\partial p_{i} \partial q_{i}} \neq 0$ for all i. The proof follows the steps...
(1) Compute the mixed (boundary) derivative of the action at the critical value,

$$
\frac{\partial^{2} \tilde{S}\left(\tilde{\gamma}_{d, c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}=\frac{\partial^{2} f_{1}}{\partial q \partial b_{1}} \frac{\partial q}{\partial b_{2}}
$$

(2) Take derivatives of the Hamilton's equations with respect to b_{2} and write the (linear) system as a recursive system.

$$
\begin{aligned}
& \frac{\partial q_{i+1}}{\partial b_{2}}-\frac{\partial q_{i}}{\partial b_{2}}-\frac{\partial^{2} H}{\partial p_{i}^{2}}\left(p_{i}, q_{i}\right) \frac{\partial p_{i}}{\partial b_{2}}-\frac{\partial^{2} H}{\partial p_{i} \partial q_{i}}\left(p_{i}, q_{i}\right) \frac{\partial q_{i}}{\partial b_{2}}=0 \\
& \frac{\partial p_{i}}{\partial b_{2}}-\frac{\partial p_{i-1}}{\partial b_{2}}+\frac{\partial^{2} H}{\partial q_{i}^{2}}\left(p_{i}, q_{i}\right) \frac{\partial q_{i}}{\partial b_{2}}+\frac{\partial^{2} H}{\partial q_{i} \partial p_{i}}\left(p_{i}, q_{i}\right) \frac{\partial p_{i}}{\partial b_{2}}=0
\end{aligned}
$$

Proof outline

(2) Express the determinant of \tilde{A}_{N} as a recursive system, using the fact that,

$$
\operatorname{det} \tilde{A}_{N}=\operatorname{det} D_{1} \operatorname{det}\left(D_{4}-D_{3} D_{1}^{-1} D_{2}\right)
$$

and the matrix $D_{4}-D_{3} D_{1}^{-1} D_{2}$ is tri-diagonal.

Proof outline

(2) Express the determinant of \tilde{A}_{N} as a recursive system, using the fact that,

$$
\operatorname{det} \tilde{A}_{N}=\operatorname{det} D_{1} \operatorname{det}\left(D_{4}-D_{3} D_{1}^{-1} D_{2}\right)
$$

and the matrix $D_{4}-D_{3} D_{1}^{-1} D_{2}$ is tri-diagonal.
(3) Recognize these systems are almost the same after gauge transformation.

The same steps apply in the n-dimensional case as well.

Specializations

For the rest of this talk we will make a few assumptions...
(1) $H\left(p_{i}, q_{i}\right)=\frac{1}{2 m} p_{i}^{2}+V\left(q_{i}\right)$ where V is a twice differentiable function.
(2) N is odd.

Specializations

For the rest of this talk we will make a few assumptions...
(1) $H\left(p_{i}, q_{i}\right)=\frac{1}{2 m} p_{i}^{2}+V\left(q_{i}\right)$ where V is a twice differentiable function.
(2) N is odd.

And so the statement from the theorem simplifies to,

$$
\frac{\partial^{2} \tilde{S}_{d}\left(\tilde{\gamma}_{d, c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}=\frac{\frac{\partial^{2} f_{1}\left(q_{1}, b_{1}\right)}{\partial q_{1} \partial b_{1}} \frac{\partial^{2} f_{2}\left(q_{N}, b_{2}\right)}{\partial q_{N} \partial b_{2}}}{\operatorname{det} \tilde{A}_{N}}
$$

Convergence of \tilde{A}_{N}

Theorem

The operator \tilde{A}_{N} weakly converges to the operator \tilde{A}.
To prove this theorem we need to be careful with epsilons (as opposed to letting $\epsilon=1$).

Using the discrete generalized Gelfand-Yaglom formula we have,

$$
\lim _{N \rightarrow \infty} \operatorname{det} \tilde{A}_{N}=\frac{\frac{\partial^{2} f_{1}\left(q_{1}, b_{1}\right)}{\partial q_{1} \partial b_{1}} \frac{\partial^{2} f_{2}\left(q_{N}, b_{2}\right)}{\partial q_{N} \partial b_{2}}}{\frac{\partial^{2} \tilde{S}_{d}\left(\tilde{\gamma}_{d, c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}}
$$

so the limit is finite and well-defined*.

Next goal...

Next goal. Ideally we want a generalized Gelfand-Yaglom formula for $\operatorname{det}_{\zeta} \tilde{A}$, so that we may compare it to $\lim _{N \rightarrow \infty} \operatorname{det} \tilde{A}_{N}$.

Next goal...

Next goal. Ideally we want a generalized Gelfand-Yaglom formula for $\operatorname{det}_{\zeta} \tilde{A}$, so that we may compare it to $\lim _{N \rightarrow \infty} \operatorname{det} \tilde{A}_{N}$.

Instead, we computed a generalized (continuous) Gelfand-Yaglom formula using A. Recall,

$$
A=-\frac{d^{2}}{d t^{2}}-\frac{1}{m} V^{\prime \prime}\left(q_{c}(t)\right)
$$

and the boundary conditions take the form,

$$
\dot{y}(0)=\frac{a_{1}}{m} y(0) \quad \dot{y}(T)=\frac{a_{2}}{m} y(T)
$$

Generalized Gelfand-Yaglom formula

$$
\begin{aligned}
& \text { Let } L=-\frac{d^{2}}{d t^{2}}+u(t) \text { where } u(t) \in C^{1}([0, T], \mathbb{R}) \text { and } \\
& \qquad D(L)=\left\{y(t) \in W^{2,2}(0, T): \dot{y}(0)=\frac{a_{1}}{m} y(0), \dot{y}(T)=\frac{a_{2}}{m} y(T)\right\}
\end{aligned}
$$

Theorem

The ζ-regularized determinant of the operator L satisfies the following equation,

$$
\operatorname{det}{ }_{\zeta} L=\dot{y}_{1}(T)-\frac{a_{2}}{m} y_{1}(T)
$$

where $y_{1}(t)$ is the solution to the initial value problem,

$$
-\ddot{y}(t)+u(t) y(t)=0, y(0)=1, \dot{y}(0)=\frac{a_{1}}{m}
$$

Generalized Gelfand-Yaglom formula

The proof is very similar to the proof of the original
Gelfand-Yaglom formula. The outline goes,
(1) Consider two solutions of the equation $-\ddot{y}+u(t) y=\lambda y$ with boundary conditions,
(1) $y_{1}(0)=1, \dot{y}_{1}(0)=a_{1} / m$
(2) $y_{2}(T)=1, \dot{y}_{2}(T)=a_{2} / m$

Generalized Gelfand-Yaglom formula

The proof is very similar to the proof of the original
Gelfand-Yaglom formula. The outline goes,
(1) Consider two solutions of the equation $-\ddot{y}+u(t) y=\lambda y$ with boundary conditions,
(1) $y_{1}(0)=1, \dot{y}_{1}(0)=a_{1} / m$
(2) $y_{2}(T)=1, \dot{y}_{2}(T)=a_{2} / m$
(2) Use the two solutions to simplify the expression $\operatorname{Tr} R_{\lambda}$, therefore simplifying the expression

$$
\log \operatorname{det}{ }_{\zeta}(L-\lambda I)=-\operatorname{Tr} R_{\lambda}
$$

to

$$
\log \operatorname{det}_{\zeta}(L-\lambda I)=C\left(\dot{y}_{1}(T)-\frac{a_{2}}{m} y_{1}(T)\right)
$$

Generalized Gelfand-Yaglom formula

The proof is very similar to the proof of the original
Gelfand-Yaglom formula. The outline goes,
(1) Consider two solutions of the equation $-\ddot{y}+u(t) y=\lambda y$ with boundary conditions,
(1) $y_{1}(0)=1, \dot{y}_{1}(0)=a_{1} / m$
(2) $y_{2}(T)=1, \dot{y}_{2}(T)=a_{2} / m$
(2) Use the two solutions to simplify the expression $\operatorname{Tr} R_{\lambda}$, therefore simplifying the expression

$$
\log \operatorname{det}{ }_{\zeta}(L-\lambda I)=-\operatorname{Tr} R_{\lambda}
$$

to

$$
\log \operatorname{det}_{\zeta}(L-\lambda I)=C\left(\dot{y}_{1}(T)-\frac{a_{2}}{m} y_{1}(T)\right)
$$

(3) Using asymptotics compute that $C=1$.

Generalized Gelfand-Yaglom formula

We can put this in the context of the operator A to get,

Corollary

For the operator A with mixed boundary conditions we have the generalized Gelfand-Yaglom formula,

$$
\operatorname{det}_{\zeta} A=\frac{\partial \dot{q}_{c}(T)}{\partial q}-\frac{a_{2}}{m} \frac{\partial q_{c}(T)}{\partial q}
$$

Generalized Gelfand-Yaglom formula

We can put this in the context of the operator A to get,

Corollary

For the operator A with mixed boundary conditions we have the generalized Gelfand-Yaglom formula,

$$
\operatorname{det}_{\zeta} A=\frac{\partial \dot{q}_{c}(T)}{\partial q}-\frac{a_{2}}{m} \frac{\partial q_{c}(T)}{\partial q}
$$

After taking some derivative we get,

$$
\frac{\partial^{2} \tilde{S}\left(\tilde{\gamma}_{c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}=\frac{\frac{\partial^{2} f_{1}\left(q_{1}, b_{1}\right)}{\partial q_{1} \partial b_{1}} \frac{\partial^{2} f_{2}\left(q_{N}, b_{2}\right)}{\partial q_{N} \partial b_{2}}}{m \operatorname{det}{ }_{\zeta} A}
$$

The operator A_{N}

So far we have,

$$
\frac{\partial^{2} \tilde{S}_{d}\left(\tilde{\gamma}_{d, c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}=\frac{\frac{\partial^{2} f_{1}\left(q_{1}, b_{1}\right)}{\partial q_{1} \partial b_{1}} \frac{\partial^{2} f_{2}\left(q_{N}, b_{2}\right)}{\partial q_{N} \partial b_{2}}}{\lim _{N \rightarrow \infty} \operatorname{det} \tilde{A}_{N}}
$$

and

$$
\frac{\partial^{2} \tilde{S}\left(\tilde{\gamma}_{c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}=\frac{\frac{\partial^{2} f_{1}\left(q_{1}, b_{1}\right)}{\partial q_{1} \partial b_{1}} \frac{\partial^{2} f_{2}\left(q_{N}, b_{2}\right)}{\partial q_{N} \partial b_{2}}}{m \operatorname{det}{ }_{\zeta} A}
$$

The operator A_{N}

So far we have,

$$
\frac{\partial^{2} \tilde{S}_{d}\left(\tilde{\gamma}_{d, c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}=\frac{\frac{\partial^{2} f_{1}\left(q_{1}, b_{1}\right)}{\partial q_{1} \partial b_{1}} \frac{\partial^{2} f_{2}\left(q_{N}, b_{2}\right)}{\partial q_{N} \partial b_{2}}}{\lim _{N \rightarrow \infty} \operatorname{det} \tilde{A}_{N}}
$$

and

$$
\frac{\partial^{2} \tilde{S}\left(\tilde{\gamma}_{c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}=\frac{\frac{\partial^{2} f_{1}\left(q_{1}, b_{1}\right)}{\partial q_{1} \partial b_{1}} \frac{\partial^{2} f_{2}\left(q_{N}, b_{2}\right)}{\partial q_{N} \partial b_{2}}}{m \operatorname{det}_{\zeta} A}
$$

One would hope that $\lim _{N \rightarrow \infty} \operatorname{det} \tilde{A}_{N}=\operatorname{det}_{\zeta} \tilde{A}$, so we would suspect

$$
\operatorname{det}{ }_{\zeta} \tilde{A}=m \operatorname{det}{ }_{\zeta} A
$$

The operator A_{N}

Well we have this* in the discrete case...

Theorem

The determinants of the discrete operators A_{N} and \tilde{A}_{N} satisfy the relation

$$
\operatorname{det} \tilde{A}_{N}=(-1)^{N-1} m \operatorname{det} A_{N}
$$

Continuous generalized Gelfand-Yaglom formula
The operator A_{N}
Lattice regularization

The operator A_{N}

Well we have this* in the discrete case...

Theorem

The determinants of the discrete operators A_{N} and \tilde{A}_{N} satisfy the relation

$$
\operatorname{det} \tilde{A}_{N}=(-1)^{N-1} m \operatorname{det} A_{N}
$$

The operator A_{N} has the form,

$$
A_{4}=\left(\begin{array}{cccc}
\frac{a_{1}}{m}+1-\frac{1}{m} V^{\prime \prime}\left(q_{c}\left(t_{1}\right)\right) & -1 & 0 & 0 \\
-1 & 2-\frac{1}{m} V^{\prime \prime}\left(q\left(t_{2}\right)\right) & -1 & 0 \\
0 & -1 & 2-\frac{1}{m} V^{\prime \prime}\left(q\left(t_{2}\right)\right) & -1 \\
0 & 0 & -1 & -\frac{a_{2}}{m}+1
\end{array}\right)
$$

Continuous generalized Gelfand-Yaglom formula
The operator A_{N}
Lattice regularization

The operator A_{N}

Well we have this* in the discrete case...

Theorem

The determinants of the discrete operators A_{N} and \tilde{A}_{N} satisfy the relation

$$
\operatorname{det} \tilde{A}_{N}=(-1)^{N-1} m \operatorname{det} A_{N}
$$

The operator A_{N} has the form,

$$
A_{4}=\left(\begin{array}{cccc}
\frac{a_{1}}{m}+1-\frac{1}{m} V^{\prime \prime}\left(q_{c}\left(t_{1}\right)\right) & -1 & 0 & 0 \\
-1 & 2-\frac{1}{m} V^{\prime \prime}\left(q\left(t_{2}\right)\right) & -1 & 0 \\
0 & -1 & 2-\frac{1}{m} V^{\prime \prime}\left(q\left(t_{2}\right)\right) & -1 \\
0 & 0 & -1 & -\frac{a_{2}}{m}+1
\end{array}\right)
$$

This theorem is then obvious once you observe,

$$
m A_{N}=D_{4}-D_{3} D_{1}^{-1} D_{2}
$$

The operator A_{N}

We also have,

Theorem

The operator A_{N} weakly converges to the operator A.
As before, the limit is well-defined (no asterisk!) and finite

$$
\lim _{N \rightarrow \infty} A_{N}=\frac{\frac{\partial^{2} f_{1}\left(q_{1}, b_{1}\right)}{\partial q_{1} \partial b_{1}} \frac{\partial^{2} f_{2}\left(q_{N}, b_{2}\right)}{\partial q_{N} \partial b_{2}}}{m \frac{\partial^{2} \tilde{S}_{d}\left(\tilde{\gamma}_{d, c} ; b_{1}, b_{2}\right)}{\partial b_{1} \partial b_{2}}}
$$

Obviously, one has to be careful about epsilons to prove this.

Lattice regularization

Since the determinant of A_{N} and \tilde{A}_{N} exist in the continuum limit and converge to A and \tilde{A}, respectively, we define,

Definition

We define the lattice regularized determinants of A and \tilde{A} by,

$$
\begin{aligned}
\operatorname{det} \operatorname{reg} A & =\lim _{N \rightarrow \infty} \operatorname{det} A_{N} \\
\operatorname{det} \operatorname{reg}^{A} & =\lim _{N \rightarrow \infty} \operatorname{det} \tilde{A}_{N}
\end{aligned}
$$

Lattice regularization

Since the determinant of A_{N} and \tilde{A}_{N} exist in the continuum limit and converge to A and \tilde{A}, respectively, we define,

Definition

We define the lattice regularized determinants of A and \tilde{A} by,

$$
\begin{aligned}
\operatorname{det} \operatorname{reg} A & =\lim _{N \rightarrow \infty} \operatorname{det} A_{N} \\
\operatorname{det} \operatorname{reg} \tilde{A} & =\lim _{N \rightarrow \infty} \operatorname{det} \tilde{A}_{N}
\end{aligned}
$$

And we see from everything that,

$$
\operatorname{det}_{\mathrm{reg}} A=\operatorname{det}{ }_{\zeta} A
$$

Continuous generalized Gelfand-Yaglom formula

Concluding remarks

(1) We wanted (and never got) $\operatorname{det}_{\text {reg }} \tilde{A}=\operatorname{det}_{\zeta} \tilde{A}$, but I suspect this is true.

Concluding remarks

(1) We wanted (and never got) $\operatorname{det}_{\text {reg }} \tilde{A}=\operatorname{det}_{\zeta} \tilde{A}$, but I suspect this is true.
(2) Something more complex is going on in the case of mixed second derivatives of H, which probably warrants more investigation.

Concluding remarks

(1) We wanted (and never got) $\operatorname{det}_{\text {reg }} \tilde{A}=\operatorname{det}_{\zeta} \tilde{A}$, but I suspect this is true.
(2) Something more complex is going on in the case of mixed second derivatives of H, which probably warrants more investigation.
(3) Thank you for listening!

