
The Gelfand-Yaglom formula
A discrete generalized Gelfand-Yaglom formula

Lattice regularization

A generalized Gelfand-Yaglom formula

Meredith Shea

UC Berkeley

December 7, 2020

Meredith Shea A generalized Gelfand-Yaglom formula



The Gelfand-Yaglom formula
A discrete generalized Gelfand-Yaglom formula

Lattice regularization

Preliminaries
The Gelfand-Yaglom formula
A generalized action functional

Preliminaries

Consider a one dimensional quantum mechanic system with
potential V

(
q(t)

)
. The action function on the space of paths is,

S(γ) =

∫ T

0

(m
2
q̇(t)2 − V

(
q(t)

))
dt

where γ : [0,T ]→ R, t 7→ q(t) is a path.

Let γc = qc(t) satisfy
the Euler Lagrange equations,

mq̈c(t) = −V ′
(
qc(t)

)
with the boundary conditions,

qc(0) = q q̇c(0) =
p

m
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Preliminaries

Taking the second variation of the action at the critical point gives,

δ2S(γc) =

∫ T

0
(δq)A(δq)dt

where A is the operator

A = − d2

dt2
− 1

m
V ′′
(
qc(t)

)
acting on the domain

D(A) =
{
y(t) ∈W 2,2(0,T ) : y(0) = y(T ) = 0

}
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The Gelfand-Yaglom formula

Theorem (The Gelfand-Yaglom formula)

Let A and qc(t) be as described, then

∂qc(T )

∂p
=

1

2m
det ζ A

where det ζ A denotes the ζ-regularized determinant of A.
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The Gelfand-Yaglom formula

The action written in the Hamiltonian formalism is,

S̃(γ̃; q, q′) =

∫ T

0

(
p(t)q̇(t)− 1

2m
p(t)2 + V

(
q(t)

))
dt

where γ̃ : [0,T ]→ T ∗R, t 7→
(
q(t), p(t)

)
, q = q(0), and

q′ = q(T ).

Corollary

For the operator A and the action functional described above,(
∂S̃(γ̃c ; q, q′)

∂q∂q′

)−1
=

1

2m
det ζ A
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A generalized action functional

Consider the generalized Hamiltonian action functional,

S̃(γ̃; b1, b2) =

∫ T

0

(
p(t)q̇(t)− H

(
p(t), q(t)

))
dt+f1(q, b1)−f2(q′, b2)

where H is any twice differentiable Hamiltonian (for now) and f1
and f2 define the Lagrangian submanifolds

p =
∂f1
∂q

(q, b1) p′ =
∂f2
∂q′

(q′, b2)

Critical points of the action are flow lines of the Hamiltonian
vector field that connect the two submanifolds in time T .
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The Hamilton-Jacobi operator

The Hamilton-Jacobi operator, Ã, that appears in the second
variation of the action at the critical point has the form,

Ã =

(
−∂2H
∂p2

(pc , qc) d
dt −

∂2H
∂p∂q (pc , qc)

− d
dt −

∂2H
∂p∂q (pc , qc) −∂2H

∂q2
(pc , qc)

)

and has the domain,

D
(
Ã
)

=
{

(x , y) : x , y ∈W 2,2(0,T ), x(0) = a1y(0), x(T ) = a2y(T )
}

where we use the shorthand notation,

a1 =
∂2f1
∂q2

(qc , b1) a2 =
∂2f2
∂q′2

(q′c , b2)
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Motivating question

Question. Is there a similar Gelfand-Yaglom type formula for the
action S̃(γ̃c ; b1, b2) and the operator Ã?

Answer. Sort of...

1 In the discrete setting there are no issues, so that is where we
will start.

2 In the continuous setting the operator Ã causes difficulties,
but we have no problems when using A.

3 How does the discrete case compare to the continuous one in
the continuum limit?
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but we have no problems when using A.

3 How does the discrete case compare to the continuous one in
the continuum limit?

Meredith Shea A generalized Gelfand-Yaglom formula



The Gelfand-Yaglom formula
A discrete generalized Gelfand-Yaglom formula

Lattice regularization

Preliminaries
The Gelfand-Yaglom formula
A generalized action functional

Motivating question

Question. Is there a similar Gelfand-Yaglom type formula for the
action S̃(γ̃c ; b1, b2) and the operator Ã?
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The discrete action

q1
q2

q3

q4

q5
q6

p1

p2
p3

p4
p5

Figure: A discretization of a path into N = 6 position vectors and
N − 1 = 5 momentum vectors.

In the one dimensional case we propose the discrete action
functional,

S̃d(γ̃d ; b1, b2) =
N−1∑
i=1

pi (qi+1−qi )−
N−1∑
i=1

H(pi , qi )−f2(qN , b2)+f1(q1, b1)
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The discrete Hamilton-Jacobi operator

The discrete analog of the operator Ã is the (2N − 1)× (2N − 1)
matrix operator with block form,

ÃN =

(
D1 D2

D3 D4

)

D1 =


−∂2H
∂p21

. . .

− ∂2H
∂p2N−1

 D4 =



a1 − ∂2H
∂q21

−∂2H
∂q22

. . .

− ∂2H
∂q2N−1

−a2



D2 = DT
3 =


−1− ∂2H

∂p1∂q1
1

. . .

. . . 1

−1− ∂2H
∂pN−1∂qN−1

1


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Discrete Gelfand-Yaglom theorem

In the discrete setting, the critical path solves a discrete version of
Hamilton’s equations

qi+1 − qi −
∂H

∂pi
(pi , qi ) = 0, pi − pi−1 +

∂H

∂qi
(pi , qi ) = 0

and the same Lagrangian boundary conditions as earlier.

Theorem

For the discrete action functional at the critical path,
S̃d(γ̃d ,c ; b1, b2) and discrete Hamilton-Jacobi operator, ÃN , the
following Gelfand-Yaglom type formula holds (in the one
dimensional case)

∂2S̃d(γ̃d ,c ; b1, b2)

∂b1∂b2
=

∂2f1(q1,b1)
∂q1∂b1

· ∂
2f2(qN ,b2)
∂qN∂b2

det ÃN

·
N−1∏
i=1

(
−∂

2H(pi , qi )

∂pi∂qi
− 1

)
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Proof outline

For this proof we assume 1 +
∂2H(pi , qi )

∂pi∂qi
6= 0 for all i . The proof

follows the steps...

1 Compute the mixed (boundary) derivative of the action at the
critical value,

∂2S̃(γ̃d ,c ; b1, b2)

∂b1∂b2
=

∂2f1
∂q∂b1

∂q

∂b2

2 Take derivatives of the Hamilton’s equations with respect to
b2 and write the (linear) system as a recursive system.

∂qi+1

∂b2
− ∂qi
∂b2
− ∂2H

∂p2i
(pi , qi )

∂pi
∂b2
− ∂2H

∂pi∂qi
(pi , qi )

∂qi
∂b2

= 0

∂pi
∂b2
− ∂pi−1

∂b2
+
∂2H

∂q2i
(pi , qi )

∂qi
∂b2

+
∂2H

∂qi∂pi
(pi , qi )

∂pi
∂b2

= 0
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Proof outline

2 Express the determinant of ÃN as a recursive system, using
the fact that,

det ÃN = detD1 det(D4 − D3D
−1
1 D2)

and the matrix D4 − D3D
−1
1 D2 is tri-diagonal.

3 Recognize these systems are almost the same after gauge
transformation.

The same steps apply in the n-dimensional case as well.
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Specializations

For the rest of this talk we will make a few assumptions...

1 H(pi , qi ) = 1
2mp2i + V (qi ) where V is a twice differentiable

function.

2 N is odd.

And so the statement from the theorem simplifies to,

∂2S̃d(γ̃d ,c ; b1, b2)

∂b1∂b2
=

∂2f1(q1,b1)
∂q1∂b1

∂2f2(qN ,b2)
∂qN∂b2

det ÃN
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Convergence of ÃN

Theorem

The operator ÃN weakly converges to the operator Ã.

To prove this theorem we need to be careful with epsilons (as
opposed to letting ε = 1).

Using the discrete generalized Gelfand-Yaglom formula we have,

lim
N→∞

det ÃN =

∂2f1(q1,b1)
∂q1∂b1

∂2f2(qN ,b2)
∂qN∂b2

∂2S̃d (γ̃d,c ;b1,b2)
∂b1∂b2

so the limit is finite and well-defined∗.
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Next goal...

Next goal. Ideally we want a generalized Gelfand-Yaglom formula
for detζ Ã, so that we may compare it to limN→∞ det ÃN .

Instead, we computed a generalized (continuous) Gelfand-Yaglom
formula using A. Recall,

A = − d2

dt2
− 1

m
V ′′
(
qc(t)

)
and the boundary conditions take the form,

ẏ(0) =
a1
m
y(0) ẏ(T ) =

a2
m
y(T )
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for detζ Ã, so that we may compare it to limN→∞ det ÃN .
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Generalized Gelfand-Yaglom formula

Let L = − d2

dt2
+ u(t) where u(t) ∈ C 1([0,T ],R) and

D(L) =
{
y(t) ∈W 2,2(0,T ) : ẏ(0) =

a1
m
y(0), ẏ(T ) =

a2
m
y(T )

}
Theorem

The ζ-regularized determinant of the operator L satisfies the
following equation,

det ζ L = ẏ1(T )− a2
m
y1(T )

where y1(t) is the solution to the initial value problem,

−ÿ(t) + u(t)y(t) = 0, y(0) = 1, ẏ(0) =
a1
m

Meredith Shea A generalized Gelfand-Yaglom formula



The Gelfand-Yaglom formula
A discrete generalized Gelfand-Yaglom formula

Lattice regularization

Continuous generalized Gelfand-Yaglom formula
The operator AN
Lattice regularization

Generalized Gelfand-Yaglom formula

The proof is very similar to the proof of the original
Gelfand-Yaglom formula. The outline goes,

1 Consider two solutions of the equation −ÿ + u(t)y = λy with
boundary conditions,

1 y1(0) = 1, ẏ1(0) = a1/m
2 y2(T ) = 1, ẏ2(T ) = a2/m

2 Use the two solutions to simplify the expression TrRλ,
therefore simplifying the expression

log det ζ(L− λI ) = −TrRλ

to
log det ζ(L− λI ) = C

(
ẏ1(T )− a2

m
y1(T )

)
3 Using asymptotics compute that C = 1.

Meredith Shea A generalized Gelfand-Yaglom formula



The Gelfand-Yaglom formula
A discrete generalized Gelfand-Yaglom formula

Lattice regularization

Continuous generalized Gelfand-Yaglom formula
The operator AN
Lattice regularization

Generalized Gelfand-Yaglom formula

The proof is very similar to the proof of the original
Gelfand-Yaglom formula. The outline goes,

1 Consider two solutions of the equation −ÿ + u(t)y = λy with
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Generalized Gelfand-Yaglom formula

We can put this in the context of the operator A to get,

Corollary

For the operator A with mixed boundary conditions we have the
generalized Gelfand-Yaglom formula,

det ζ A =
∂q̇c(T )

∂q
− a2

m

∂qc(T )

∂q

After taking some derivative we get,

∂2S̃(γ̃c ; b1, b2)

∂b1∂b2
=

∂2f1(q1,b1)
∂q1∂b1

∂2f2(qN ,b2)
∂qN∂b2

m det ζ A
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The operator AN

So far we have,

∂2S̃d(γ̃d ,c ; b1, b2)

∂b1∂b2
=

∂2f1(q1,b1)
∂q1∂b1

∂2f2(qN ,b2)
∂qN∂b2

limN→∞ det ÃN

and

∂2S̃(γ̃c ; b1, b2)

∂b1∂b2
=

∂2f1(q1,b1)
∂q1∂b1

∂2f2(qN ,b2)
∂qN∂b2

m det ζ A

One would hope that limN→∞ det ÃN = detζ Ã, so we would
suspect

det ζ Ã = m det ζ A
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The operator AN

Well we have this∗ in the discrete case...

Theorem

The determinants of the discrete operators AN and ÃN satisfy the
relation

det ÃN = (−1)N−1m detAN

The operator AN has the form,

A4 =


a1
m + 1− 1

mV ′′
(
qc(t1)

)
−1 0 0

−1 2− 1
mV ′′

(
q(t2)

)
−1 0

0 −1 2− 1
mV ′′

(
q(t2)

)
−1

0 0 −1 −a2
m + 1


This theorem is then obvious once you observe,

mAN = D4 − D3D
−1
1 D2
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The operator AN

We also have,

Theorem

The operator AN weakly converges to the operator A.

As before, the limit is well-defined (no asterisk!) and finite

lim
N→∞

AN =

∂2f1(q1,b1)
∂q1∂b1

∂2f2(qN ,b2)
∂qN∂b2

m
∂2S̃d (γ̃d,c ;b1,b2)

∂b1∂b2

Obviously, one has to be careful about epsilons to prove this.
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Lattice regularization

Since the determinant of AN and ÃN exist in the continuum limit
and converge to A and Ã, respectively, we define,

Definition

We define the lattice regularized determinants of A and Ã by,

det reg A = lim
N→∞

detAN

det reg Ã = lim
N→∞

det ÃN

And we see from everything that,

det reg A = det ζ A

Meredith Shea A generalized Gelfand-Yaglom formula



The Gelfand-Yaglom formula
A discrete generalized Gelfand-Yaglom formula

Lattice regularization

Continuous generalized Gelfand-Yaglom formula
The operator AN
Lattice regularization

Lattice regularization

Since the determinant of AN and ÃN exist in the continuum limit
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Concluding remarks

1 We wanted (and never got) detreg Ã = detζ Ã, but I suspect
this is true.

2 Something more complex is going on in the case of mixed
second derivatives of H, which probably warrants more
investigation.

3 Thank you for listening!
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