(1) Let $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$.
(a) $\boldsymbol{u} \cdot \boldsymbol{v}=$
(b) List the four properties of the inner product:
(i)
(ii)
(iii)
(iv)
(c) $\|\boldsymbol{v}\|=$
(2) Let $\boldsymbol{u}=\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right], \boldsymbol{v}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$, and $\boldsymbol{w}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$ and compute the following
(a) $(\boldsymbol{u} \cdot \boldsymbol{v}) \boldsymbol{w}$
(b) $(\boldsymbol{v} \cdot \boldsymbol{w}) \boldsymbol{u}$
(c) $\operatorname{dist}(\boldsymbol{u}, \boldsymbol{v})-\operatorname{dist}(\boldsymbol{v}, \boldsymbol{w})$
(d) $\operatorname{dist}(\boldsymbol{u}, \boldsymbol{w})$
(3) Find a nonzero vector \boldsymbol{v} that is orthogonal to $\boldsymbol{u}_{\boldsymbol{1}}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $\boldsymbol{u}_{\boldsymbol{2}}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$.
(4) Find a matrix A with dimensions 3×3 such that the columns are orthogonal but the rows are not.
(5) Determine whether the following are true or false. Justify your answer.
(a) Let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ be an orthogonal set, then $\left\{c_{1} \boldsymbol{v}_{1}, c_{2} \boldsymbol{v}_{2}\right\}$ is an orthogonal set for any c_{1}, c_{2}.
(b) If $\boldsymbol{u} \perp \boldsymbol{v}$ and $\boldsymbol{v} \perp \boldsymbol{w}$, then $\boldsymbol{u} \perp \boldsymbol{w}$.
(c) If $\boldsymbol{u} \perp \boldsymbol{v}$ and $\boldsymbol{v} \perp \boldsymbol{w}$, then $\operatorname{dist}(\boldsymbol{u}, \boldsymbol{w})=\operatorname{dist}(\boldsymbol{u}, \boldsymbol{v})+\operatorname{dist}(\boldsymbol{v}, \boldsymbol{w})$.
(d) Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$ be the columns of the matrix A and suppose $\boldsymbol{a}_{i} \perp \boldsymbol{a}_{j}$ for $i \neq j$, then $A A^{T}=D$, where D is diagonal.
(e) Let A be a square matrix with orthogonal columns a_{1}, \ldots, a_{n} and $\left\|a_{i}\right\| \neq 0$ for all $i=1, \ldots, n$, then A is invertible.

