Vector Equations Worksheet

January 23, 2018

1. Fill out the columns of the following table.

Term	Definition	Notation Used
Vector		
Linear combination		
Span		

2. Draw the vectors $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $u = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$, and v + u on the graph below.

3. For \boldsymbol{u} and \boldsymbol{v} above, geometrically describe $\mathrm{Span}\{\boldsymbol{v},\boldsymbol{u}\}.$

4. Let
$$u = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$$
, $v = \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix}$, and $w = \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix}$. Compute the following,

a.
$$\boldsymbol{v} - \boldsymbol{w}$$

b.
$$u + 3v$$

c.
$$2w + v$$

d.
$$w + u - 2v$$

5. a. Let
$$u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$. Find c_1 and c_2 (constants) such that $c_1 u + c_2 v = \begin{bmatrix} 7 \\ -6 \end{bmatrix}$.

b. Is
$$\begin{bmatrix} 7 \\ -6 \end{bmatrix}$$
 in Span $\{u, v\}$?

6. a. Let
$$\mathbf{a_1} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$
, $\mathbf{a_2} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$. Does the equation $x_1 \mathbf{a_1} + x_2 \mathbf{a_2} = \mathbf{b}$ have a solution? If so, what is it?

b. Rewrite the above equation as a linear system and in matrix form.