(1) List the 8 axioms of a vector space:
(a)
(b)
(c)
(d)
(e)
(g)
(h)
(2) List the three properties of a subspace:
(a)
(b)
(c)
(3) The following are NOT vector spaces. Name an axiom (there may be more than one) they fail to satisfy:
(a) Let V be the set of points in the upper half plane of of \mathbb{R}^{2}, with usual addition and scalar multiplication.
(b) Let $V=\{(x, y, z) \mid x=y+2, z=3 y\}$ with usual addition and scalar multiplication.
(c) As a set let $V=\mathbb{R}^{2}$. Define scalar multiplication as usual, but define addition by,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \oplus\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+y_{2} \\
x_{2}+y_{1}
\end{array}\right]
$$

(4) Show that $P_{2}(\mathbb{R})=\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}$ is a vector space by either showing that it satisfies the axioms of a vector space or by showing is it a subspace of $C(\mathbb{R})$.
(5) Let W be the set of all vectors of the form $\left[\begin{array}{c}a+2 b \\ 3 b \\ a\end{array}\right]$. Find \boldsymbol{u} and \boldsymbol{v} such that $W=\operatorname{Span}\{\boldsymbol{u}, \boldsymbol{v}\}$. For what n is W a subspace of \mathbb{R}^{n} ?
(6) Mathematically define the kernel and range of a linear transformation (how Paulin defines them in his notes is "mathematical").
(7) Consider the transformation $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ defined by, $p(x) \mapsto\left(p^{\prime}(1), p^{\prime}(0)\right)$ where $p(x)$ is some element of $P_{2}(\mathbb{R})$ (which we defined in 3).
(a) Show that T is a linear transformation.
(b) Compute the kernel and range of T.
(c) Show that the kernel and range of T are subspaces of $P_{2}(\mathbb{R})$ and \mathbb{R}^{2}, respectively.

