(1) Define the following terms. Be sure to describe relevant notation used.

Linearly independent:

Linearly dependent:

(2) Consider a linear system represented by the augmented matrix $(a_1 \ a_2 \cdots a_n \mid b)$ and complete the following logical statements:

The linear system is consistent if the _____ column of the matrix is a _____ column.

The linear system has a unique solution if only the _____ column is a _____ column.

(3) Given the following augmented matrices in reduced echelon form determine whether the linear system is consistent and unique.

$$\begin{bmatrix} 1 & 3 & 0 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$

(4) Determine whether the following set of vectors are linearly independent.

(a)
$$\boldsymbol{v_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \boldsymbol{v_2} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

(b)
$$\boldsymbol{v_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \boldsymbol{v_2} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \ \boldsymbol{v_3} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

(c)
$$\boldsymbol{v_1} = \begin{bmatrix} 1\\2\\7 \end{bmatrix}, \ \boldsymbol{v_2} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

(d)
$$\boldsymbol{v_1} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \ \boldsymbol{v_2} = \begin{bmatrix} 5\\2\\1 \end{bmatrix}, \ \boldsymbol{v_3} = \begin{bmatrix} 3\\2\\-1 \end{bmatrix}$$

(e)
$$\boldsymbol{v_1} = \begin{bmatrix} 1\\ 2\\ 0\\ 1 \end{bmatrix}, \ \boldsymbol{v_2} = \begin{bmatrix} -1\\ 2\\ 5\\ 0 \end{bmatrix}, \ \boldsymbol{v_3} = \begin{bmatrix} 1\\ 10\\ 10\\ 3 \end{bmatrix}$$

(5) For the sets of A and **b** given below solve the linear system $A\mathbf{x} = b$ (for \mathbf{x}). Based on your solution to the nonhomogeneous problem state the solution to the homogeneous problem (without solving it separately!).

(a)
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 3 & 4 \end{bmatrix}$$
, $\boldsymbol{b} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$
(b) $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, $\boldsymbol{b} = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$

- (6) For the following statements determine whether they are true or false. If false, provide a counter-example to the claim. If true, given brief reasoning (no more than 3 sentences).
 - (a) If $b \in \text{Span}\{a_1, \dots, a_n\}$ then the set $\{b, a_1, \dots, a_n\}$ is linearly dependent.
 - (b) If $b \in \text{Span}\{a_1, \dots, a_n\}$ the solution to Ax = b (where $A = [a_1 \cdots a_n]$) is unique.
 - (c) Let $v_1, \ldots, v_m \in \mathbb{R}^n$. If m = 4 and n = 3 then the set of vectors is linearly independent.
 - (d) It $v_1, v_2 \in \mathbb{R}^3$, then the Span $\{v_1, v_2\}$ looks, geometrically, like a plane in \mathbb{R}^3 .