(1) Define the following terms. Be sure to describe relevant notation used.

Linearly independent:

Linearly dependent:

(2) Consider a linear system represented by the augmented matrix ($\boldsymbol{a}_{1} \boldsymbol{a}_{\mathbf{2}} \cdots \boldsymbol{a}_{\boldsymbol{n}} \mid \boldsymbol{b}$) and complete the following logical statements:

The linear system is consistent if the \qquad column of the matrix is a \qquad column.

The linear system has a unique solution if only the \qquad column is a \qquad column.
(3) Given the following augmented matrices in reduced echelon form determine whether the linear system is consistent and unique.

$$
\left[\begin{array}{cccc}
1 & 3 & 0 & 4 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

(4) Determine whether the following set of vectors are linearly independent.
(a) $\boldsymbol{v}_{\boldsymbol{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$
(b) $\boldsymbol{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{l}2 \\ 2\end{array}\right], \boldsymbol{v}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 5\end{array}\right]$
(c) $\boldsymbol{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 7\end{array}\right], \boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
(d) $\boldsymbol{v}_{\boldsymbol{1}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{l}5 \\ 2 \\ 1\end{array}\right], \boldsymbol{v}_{\mathbf{3}}=\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]$
(e) $\boldsymbol{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right], \boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{c}-1 \\ 2 \\ 5 \\ 0\end{array}\right], \boldsymbol{v}_{\boldsymbol{3}}=\left[\begin{array}{c}1 \\ 10 \\ 10 \\ 3\end{array}\right]$
(5) For the sets of A and \boldsymbol{b} given below solve the linear system $A \boldsymbol{x}=b$ (for \boldsymbol{x}). Based on your solution to the nonhomogeneous problem state the solution to the homogeneous problem (without solving it separately!).
(a) $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 3 & 4\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}4 \\ 0\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & 1 & 1\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}2 \\ 0 \\ 4\end{array}\right]$
(6) For the following statements determine whether they are true or false. If false, provide a counter-example to the claim. If true, given brief reasoning (no more than 3 sentences).
(a) If $\boldsymbol{b} \in \operatorname{Span}\left\{\boldsymbol{a}_{\mathbf{1}}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}\right\}$ then the set $\left\{\boldsymbol{b}, \boldsymbol{a}_{\mathbf{1}}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}\right\}$ is linearly dependent.
(b) If $\boldsymbol{b} \in \operatorname{Span}\left\{\boldsymbol{a}_{\boldsymbol{1}}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}\right\}$ the the solution to $A \boldsymbol{x}=\boldsymbol{b}$ (where $A=\left[\boldsymbol{a}_{\boldsymbol{1}} \cdots \boldsymbol{a}_{\boldsymbol{n}}\right]$) is unique.
(c) Let $\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{m}} \in \mathbb{R}^{n}$. If $m=4$ and $n=3$ then the set of vectors is linearly independent.
(d) It $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}} \in \mathbb{R}^{3}$, then the $\operatorname{Span}\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}\right\}$ looks, geometrically, like a plane in \mathbb{R}^{3}.

