(1) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Define the following,
(a) $\operatorname{rank} T$
(b) the rank theorem (sometimes called the rank-nullity theorem)
(2) Let T be a linear transformation represented by a matrix A and suppose T^{\prime} is the linear transformation represented by the matrix A^{T}, where $\left(A^{T}\right)_{i j}=A_{j i}$.
(a) Let A be an $n \times m$ matrix. What is the domain and codomain of T and T^{\prime} ?
(b) Prove that the $\operatorname{dim} \operatorname{col} A^{T}=\operatorname{dim}$ row A.
(c) Prove that $\operatorname{rank} T=\operatorname{rank} T^{\prime}$. Hint: use the REF of A.
(d) When is T^{\prime} the inverse of T ? Why is this not always the case?
(3) Let A be an $m \times n$ matrix that represents a linear transformation, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Restate the following properties in terms of: $\operatorname{rank} A, \operatorname{col} A$, row A, and null A (you don't have to use all of them).
(a) T is onto.
(b) T is one-to-one.
(c) A is invertible.
(d) T is the zero transformation.
(4) Answer the following true or false questions. Justify your answers.
(a) If A is a 6×7 matrix and $R R E F(A)$ has 6 pivotsm, then the map given by multiplication by A is one-to-one.
(b) If A is a 4×5 matrix and B is a 5×3 matrix then $\operatorname{rank} A \leq \operatorname{rank} B$.
(c) If A is an $n \times n$ rank matrix such that $\operatorname{rank}\left(A^{2}\right)<n$, then rank $A<n$ as well.
(d) If A is a 4×5 matrix and B is a 5×3 matrix, then $\operatorname{rank}(A B) \leq \operatorname{rank} A$.

