Lec 24 Worksheet \qquad

For questions 1-8 compute the power series for the function. Assume the center of the series is 0 , unless otherwise indicated.

1. $f(x)=\frac{5}{1-4 x^{2}}$
2. $f(x)=\frac{x^{2}}{x^{4}+16}$
3. $f(x)=x \tan ^{-1}\left(x^{3}\right)$
4. $f(x)=\int_{1}^{x} \frac{\tan ^{-1} t}{t} d t$
5. $f(x)=\int_{0}^{x} t^{2} \ln (1+t) d t$
6. $f(x)=\frac{2 x+3}{x^{2}+3 x+2}$
7. $f(x)=\frac{x-1}{x+2}, a=1(\operatorname{try} a=0$ too $)$
8. $f(x)=\frac{5(x-3)}{4-x}, a=3$
9. Show that

$$
J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}
$$

Satisfies the differential equation

$$
x^{2} J_{0}^{\prime \prime}(x)+x J_{0}^{\prime}(x)+x^{2} J_{0}(x)=0
$$

10. By completing the square show that

$$
\int_{0}^{1 / 2} \frac{d x}{x^{2}-x+1}=\frac{\pi}{3 \sqrt{3}}
$$

Now by factoring $x^{3}+1$ as a sum of cubes, rewrite the integral above. Then express $1 /\left(x^{3}+1\right)$ as the sum of a power series and use it to prove the following formula,

$$
\pi=\frac{3 \sqrt{3}}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{8^{n}}\left(\frac{2}{3 n+1}+\frac{1}{3 n+2}\right)
$$

