Determine whether the following integrals converge or diverge using any method of your liking,
(1) $\int_{2}^{\infty} \frac{1}{x \log \left(x^{2}\right)} d x$
(2) $\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$
(3) $\int_{3}^{\infty} \frac{x^{2}(x+\sqrt{x})}{(x+1)\left(x^{2}-1\right)(2 x+3)} d x$

Compute the length of the following curves between the given bounds.
(1) $x=2+(y-1)^{2}, \quad 2 \leq y \leq 5$.
(2) $y=(3 x+2)^{2}, \quad 1 \leq x \leq 4$.
(3) $y=\frac{1}{4}\left(e^{2 x}+e^{-2 x}\right), \quad 0 \leq x \leq 1$.

Determine whether the following sequences converge or diverge,
(1) $a_{n}=\frac{5 n \cdot n!}{(n+2)!}$
(2) $b_{n}=(-1)^{n+1} \frac{2+3 n^{2}}{5 n^{2}+2 n}$
(3) $c_{n}=\frac{\sin \left(\frac{1}{n}\right)}{n}$
(1) Let $\left\{a_{n}\right\}$ be an alternating sequence, in other words $a_{n}=(-1)^{n} b_{n}$ where $\left\{b_{n}\right\}$ is a sequence of entirely positive or entirely negative numbers. If $\left\{a_{n}\right\}$ converges, what is $\lim _{n \rightarrow \infty} a_{n}$?
(2) (a) Give an example of a sequence that is bounded, but not monotonic. (b) Given an example of a sequence that is monotonic, but not bounded.
(3) Let $\left\{x_{n}\right\}$ be a convergent sequence and let $f(x)$ be an everywhere continuous function. Does the sequence $f\left(x_{n}\right)$ converge?

Consider the following questions regarding series,
(1) Compute the first 5 terms of the sequence of partial sums for the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n} n^{2}}
$$

(2) Determine whether the following series converges. Be sure to explain your reasoning.

$$
\sum_{n=1}^{\infty}\left[3\left(\frac{4}{7}\right)^{n-1}+2\left(\frac{4}{3}\right)^{n-1}\right]
$$

(3) Determine whether the following series converges by using the integral test,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}
$$

