Lec 35: Nonhomogeneous Linear Equations, cont'd (17.2)
In this lecture we will continue our discussion on nonhomogeneous second order differential equations and we will turn our attention to the method of undetermined coefficients. In this method, we simply guess what the solution might look like, and then solve for the precise coefficients.

EXAMPLE 1. Determine the solution to the differential equation $y^{\prime \prime}+6 y^{\prime}+5 y=e^{3 x}$.

EXAMPLE 2. Determine the solution to the differential equation $y^{\prime \prime}+2 y^{\prime}-3 y=\sin x$.

EXAMPLE 3. Determine the solution to the differential equation $y^{\prime \prime}+2 y^{\prime}-3 y=$ $3 x^{2}+4 x-1$.

EXAMPLE 4. Determine the solution to the differential equation $y^{\prime \prime}+2 y^{\prime}-3 y=\left(x^{2}+4\right) e^{2 x}$.

EXAMPLE 5. Determine the solution to the differential equation $y^{\prime \prime}+2 y^{\prime}-3 y=e^{x}$.

In summary: To find the particular solution to the nonhomogeneous differential equation $a y^{\prime \prime}+b y^{\prime}+c y=F(x)$ guess a general solution of the same form as $F(x)$. If your initial guess already appears in the homogeneous solution then multiply it by an x (or x^{2} if necessary). In general it is good to guess if you see polynomials, exponentials, and sines or cosines.

