Lec 34: Nonhomogeneous Linear Equations (17.2)
Now what if our second order differential equation has the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=F(x) \tag{1}
\end{equation*}
$$

where $F(x)$ is a continuous functions, often called a forcing term (in reference to physics). To solve this we consider the complimentary homogeneous equation,

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{2}
\end{equation*}
$$

Theorem. The general solution to the nonhomogeneous differential equation (1) can be written as

$$
y(x)=y_{H}(x)+y_{p}(x)
$$

where y_{p} is a particular solution to (1) and y_{H} is the general solution to the complimentary equation (2).

Proof.

We know how to solve for y_{H}, so the question becomes how to find y_{p}. I will first introduce a systematic method called variation of parameter and then turn to a faster (but not deterministic) method called undetermined coefficients.

The Method of Variation of Parameter

Suppose we have already solved for the homogeneous solution and it has the form

$$
y_{H}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

To solve for the particular solution we suppose it has the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

From here we wish to compute u_{1} and u_{2}, and to do so we place two constraints on the functions (two functions $=$ two constraints). The first constraint is that y_{p} does in fact solve
our differential equation (1) and the second is one of our choosing,

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

We choose this as it will simplify our calculations. Let's use this to derive a mathematical equation for the first constraint,

In summary we solve for u_{1} and u_{2} by solving the two equations,

$$
\begin{align*}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2} & =0 \tag{3}\\
a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right) & =F \tag{4}
\end{align*}
$$

EXAMPLE 1. Solve the equation $y^{\prime \prime}+y^{\prime}-2 y=x^{2}$

EXAMPLE 2. Solve the equation $y^{\prime \prime}+4 y=e^{3 x}$

EXAMPLE 3. Solve the equation $y^{\prime \prime}+y=\tan x$

