Lec 32: Linear Equations, cont'd (9.5) and Second Order Linear Equations(17.1)
We will end our discussion on section 9.5 by discussing Bernoulli differential equations which have the form

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) y^{n} \tag{1}
\end{equation*}
$$

See that if $n=0$ or 1 , then the above equation is linear. Else we can use a change of variable to transform it into a first order differential equation.

EXAMPLE 1. Use the substitution $u=y^{1-n}$ to transform equation (1) into a linear equation.

EXAMPLE 2. Solve $x y^{\prime}+y=-x y^{2}$.

We will now begin our discussion on second order differential equations (which is the last major topic we will learn!).

Definition. A second order linear differential equation has the form,

$$
\begin{equation*}
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=G(x) \tag{2}
\end{equation*}
$$

If $G(x)=0$ we say that the differential equation is homogeneous. Until section 17.4 we will only deal with $P(x), Q(x)$, and $R(x)$ as constant functions. And for this section, 17.1, we will only deal with $G(x)=0$. Thus we are considering differential equations of the form,

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{3}
\end{equation*}
$$

Theorem. If $y_{1}(x)$ and $y_{2}(x)$ are both solutions to equation (2) with $G(x)=0$ and c_{1} and c_{2} are any constants, then the function

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

is also a solution of equation (2) (with $G(x)=0$).

Proof.

In order to find the general solution of a second order differential equation, we must find two linearly independent solutions.
Definition. Two functions $f(x)$ and $g(x)$ are linearly independent if $c_{1} f(x)+c_{2} g(x)=0$ if and only if $c_{1}=c_{2}=0$. In other words, f and g are not constant multiples of each other.

EXAMPLE 3. Are $f(x)=x^{2}$ and $g(x)=5 x^{2}$ linearly independent? What about $f(x)=e^{x}$ and $g(x)=e^{2 x}$?

Theorem. If y_{1} and y_{2} are linearly independent solutions of equation (2) on an interval and $P(x)$ is never 0 , then the general solution is given by

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

where c_{1} and c_{2} are arbitrary constants.
Now we will begin to consider specific cases of equation (3) (where $a \neq 0$. Let's guess at possible solutions to this equation and try $y=e^{r x}$ where r is some unknown constant. Substituting this into (3) we get,

$$
\begin{align*}
a r^{2} e^{r x}+b r e^{r x}+c e^{r x} & =0 \tag{4}\\
\left(a r^{2}+b r+c\right) e^{r x} & =0 \tag{5}
\end{align*}
$$

The last statement implies the condition

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{6}
\end{equation*}
$$

Which we refer to as the characteristic (or auxiliary) equation. Notice that this comes from the replacement $y^{\prime \prime}\left(y^{(2)}\right) \rightarrow r^{2}, y^{\prime}\left(y^{(1)}\right) \rightarrow r$, and $y\left(y^{(0)}\right) \rightarrow 1$.

The characteristic equation is just a quadratic polynomial and thus we can solve for the roots. We wish to consider three possible cases for the roots:

1. Two distinct roots $\left(b^{2}-4 a c>0\right)$
2. One repeated root $\left(b^{2}-4 a c=0\right)$
3. Two complex conjugate roots $\left(b^{2}-4 a c<0\right)$

Today we will only consider case 1 , two distinct roots. In this case,

$$
a r^{2}+b r+c=0
$$

has two distinct solutions we will call r_{1} and r_{2}. In this case the differential equation (3) has the general solution

$$
y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}
$$

Let us prove this solves (3),

EXAMPLE 3. Find the general solution to the differential equation $y^{\prime \prime}+y^{\prime}-6 y=0$.

