Lec 26: Taylor and McLaurin Series, cont'd (11.10)
The following series will be relevant to the lecture,

$$
\begin{align*}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots \tag{1}\\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \tag{2}\\
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \tag{3}\\
\cos x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots \tag{4}
\end{align*}
$$

Sometimes we can use the Taylor series definition to find the series for a given function.
EXAMPLE 1. Find the McLaurin series of $f(x)=5^{x}$ using the definition.

EXAMPLE 2. Find the McLaurin series of $f(x)=5^{x}$ using the McLaurin series for e^{x}.

Most of the time, however, it is best to manipulate Taylor series we already know, as com-
puting derivatives can become complicated and sometimes patterns are hard to see.
EXAMPLE 3. Find the McLaurin series for $f(x)=\int e^{x^{2}} d x$.

EXAMPLE 4. Find the McLaurin series for $f(x)=\sin x \cos x$.

Sometimes we may not be able to find the Taylor series for a given functions, but we can find the first few terms using multiplication and long division of series.

EXAMPLE 5. Find the first four terms of the McLaurin series for $f(x)=e^{x} \sin x$.

EXAMPLE 6. Find the first four terms of the McLaurin series for $f(x)=\frac{e^{x}}{x^{2}+1}$.

We can also revisit function limit problems and use Taylor series to simplify the work necessary to solve the limit...

EXAMPLE 7. Evaluate $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$.

