
Lec 26: Taylor and McLaurin Series, cont’d (11.10)

The following series will be relevant to the lecture,
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Sometimes we can use the Taylor series definition to find the series for a given function.

EXAMPLE 1. Find the McLaurin series of f(x) = 5x using the definition.

EXAMPLE 2. Find the McLaurin series of f(x) = 5x using the McLaurin series for ex.

Most of the time, however, it is best to manipulate Taylor series we already know, as com-
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puting derivatives can become complicated and sometimes patterns are hard to see.

EXAMPLE 3. Find the McLaurin series for f(x) =

∫
ex

2

dx.

EXAMPLE 4. Find the McLaurin series for f(x) = sinx cosx.

Sometimes we may not be able to find the Taylor series for a given functions, but we can
find the first few terms using multiplication and long division of series.

EXAMPLE 5. Find the first four terms of the McLaurin series for f(x) = ex sinx.
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EXAMPLE 6. Find the first four terms of the McLaurin series for f(x) =
ex

x2 + 1
.

We can also revisit function limit problems and use Taylor series to simplify the work nec-
essary to solve the limit...

EXAMPLE 7. Evaluate lim
x→0

ex − 1 − x

x2
.
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