Lec 23: Power Series (11.8) \qquad
Definition. A series of the form,

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots \tag{1}
\end{equation*}
$$

is called a power series about a, where the c_{n} 's are the coefficients of the series. When the power series converges, the series represents a function, $f(x)$.

EXAMPLE 1. For what values of x does the series $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n+1}$ converge.

EXAMPLE 2. For what values of x does the series $\sum_{n=0}^{\infty} \frac{n}{n!} x^{n}$ converge.

Theorem. For a given power series $\sum c_{n}(x-a)^{n}$, there are only 3 possibilities (regarding convergence:

1. The series converges absolutely only when $x=a$.
2. The series converges absolutely for all x.
3. There exists a positive (finite) number R such that the series converges absolutely if $|x-a|<R$ and diverges if $|x-a|>R$. The series my converge absolutely, converge conditionally, or diverge when $|x-a|=R$.

Definition. The number R in case (3) above is called the radius of convergence of the power series. In case (1) we say $R=0$ and in case (2) we say $R=\infty$.

To find R we will always use the ratio (or on rare occasions root) test, just like we did in examples (1) and (2). Then we are usually interested if the series converges for $|x-a|=R$, so we check these "endpoints" individually. The radius and the endpoints together give us,

Definition. The interval of convergence is all x for which the series converges (note that it will always be an interval or the single point $x=a$ when $R=0$).

EXAMPLE 3. Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{3^{n} n}$ and discuss the convergence at the endpoints.

EXAMPLE 4. Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{n^{2}}$

EXAMPLE 5. Find the interval and radius of convergence of $\sum_{n=1}^{\infty} \frac{(n x)^{n}}{n!}$

