Lec 23: Power Series (11.8) _

Definition. A series of the form,

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$
 (1)

is called a **power series about** a, where the c_n 's are the coefficients of the series. When the power series converges, the series represents a function, f(x).

EXAMPLE 1. For what values of x does the series $\sum_{n=0}^{\infty} \frac{(x-3)^n}{n+1}$ converge.

EXAMPLE 2. For what values of x does the series $\sum_{n=0}^{\infty} \frac{n}{n!} x^n$ converge.

Theorem. For a given power series $\sum c_n(x-a)^n$, there are only 3 possibilities (regarding convergence:

- 1. The series converges absolutely only when x = a.
- 2. The series converges absolutely for all x.

3. There exists a positive (finite) number R such that the series converges absolutely if |x - a| < R and diverges if |x - a| > R. The series my converge absolutely, converge conditionally, or diverge when |x - a| = R.

Definition. The number R in case (3) above is called the **radius of convergence** of the power series. In case (1) we say R = 0 and in case (2) we say $R = \infty$.

To find R we will always use the ratio (or on rare occasions root) test, just like we did in examples (1) and (2). Then we are usually interested if the series converges for |x - a| = R, so we check these "endpoints" individually. The radius and the endpoints together give us,

Definition. The **interval** of convergence is all x for which the series converges (note that it will always be an interval or the single point x = a when R = 0).

EXAMPLE 3. Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(2x)^n}{3^n n}$ and discuss the convergence at the endpoints.

EXAMPLE 4. Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-2)^n}{n^2}$

EXAMPLE 5. Find the interval and radius of convergence of $\sum_{n=1}^{\infty} \frac{(nx)^n}{n!}$