
Lec 16: The Integral Test and Estimates of Sums (11.3)

When we previously looked at the harmonic series we compared it with the integral of its
corresponding function, ∫ ∞

1

1

x
dx (1)

We noted that both diverged (and that this was probably connected). Now let’s consider a
convergent improper integral ∫ ∞

1

1

x2
dx (2)

And let’s use this to geometrically convince ourselves that the series
∞∑
n=1

1

n2
converges as

well.

To show the divergent case we use a similar argument, but instead consider the rectangles
whose tops lie above the curves. The formal proof of the integral test is given at the end of
section 11.3, and I suggest you look at it. Let us state the integral test,

Theorem (Integral Test). Suppose f is a continuous, positive, decreasing function on

[1,∞) and let an = f(n), then the series
∞∑
n=1

an is convergent if and only if the improper

integral

∫ ∞

1

f(x) dx is convergent.
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EXAMPLE 1. Does the series
∞∑
n=1

1

n2 + 1
converge?

EXAMPLE 2. For what values of p does the series
∞∑
n=1

1

np
converge?

This leads us to the p-test for series...

The p-series
∞∑
n=1

1

np
is convergent if p > 1 and divergent otherwise.

EXAMPLE 3. Does the series
∞∑
n=1

lnn

n2
converge?
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Unfortunately, the integral test does not tell us the value of the sum, only whether or not
it exists. BUT, notice from our original graph that as the integral persists, the rectangular
sums become closer to the exact area of the integral. Thus we can use the tail of the integral
to get a decent estimate on the remainder of the sum.

Suppose f(k) = ak, where f is a continuous, positive, decreasing function for x ≥ n and∑
ak is convergent. Let Rn = s− sn, then∫ ∞

n+1

f(x) dx ≤ Rn ≤
∫ ∞

n

f(x) dx (3)

and from this we get the following estimate of the sum,

sn +

∫ ∞

n+1

f(x) dx ≤ s ≤ sn +

∫ ∞

n

f(x) dx (4)

EXAMPLE 4. Estimate the sum of the series
∞∑
n=1

1

n3
using n = 3.
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