Lec 5: Trigonometric Substitution (7.3)
For this section we will utilize what is sometimes called inverse substitution. This follows the same general procedure as substitution, except that we set $x=f(\theta)$ and so $d x=f^{\prime}(\theta)$. The following table describes the necessary substitution given the type of problem:

Expression	Substitution	Identity
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta$	$1-\sin ^{2} \theta=\cos ^{2} \theta$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta$	$1+\tan ^{2} \theta=\sec ^{2} \theta$
$\sqrt{x^{2}-a^{2}}$	$x=\sec \theta$	$\sec ^{2} \theta-1=\tan ^{2} \theta$

EXAMPLE 1. Evaluate $\int \frac{d x}{x^{2} \sqrt{4-x^{2}}}$

EXAMPLE 2. Evaluate $\int \frac{\sqrt{x^{2}-4}}{x} d x$

Recall a procedure that you may have learned in algebra known as completing the square, where we transform an arbitrary polynomial so it is in the form $(x-\alpha)^{2}+\beta$. We will need to be comfortable completing the square to evaluate certain integrals using trigonometric substitution.

EXAMPLE 3. Complete the square for the polynomial $x^{2}+4 x+11$.

EXAMPLE 4. Complete the square for the polynomial $3-2 x-x^{2}$.

EXAMPLE 5. Evaluate $\int x^{2} \sqrt{3-2 x-x^{2}} d x$

