Lec 5: Trigonometric Substitution (7.3)

For this section we will utilize what is sometimes called **inverse substitution**. This follows the same general procedure as substitution, except that we set $x = f(\theta)$ and so $dx = f'(\theta)$. The following table describes the necessary substitution given the type of problem:

Expression	Substitution	Identity
$ \sqrt{a^2 - x^2} \sqrt{a^2 + x^2} \sqrt{x^2 - a^2} $	$x = a \sin \theta$ $x = a \tan \theta$ $x = \sec \theta$	$1 - \sin^2 \theta = \cos^2 \theta$ $1 + \tan^2 \theta = \sec^2 \theta$ $\sec^2 \theta - 1 = \tan^2 \theta$

EXAMPLE 1. Evaluate $\int \frac{dx}{x^2\sqrt{4-x^2}}$

EXAMPLE 2. Evaluate
$$\int \frac{\sqrt{x^2 - 4}}{x} dx$$

Recall a procedure that you may have learned in algebra known as **completing the** square, where we transform an arbitrary polynomial so it is in the form $(x - \alpha)^2 + \beta$. We will need to be comfortable completing the square to evaluate certain integrals using trigonometric substitution.

EXAMPLE 3. Complete the square for the polynomial $x^2 + 4x + 11$.

EXAMPLE 4. Complete the square for the polynomial $3 - 2x - x^2$.

EXAMPLE 5. Evaluate
$$\int x^2 \sqrt{3 - 2x - x^2} \, dx$$