Lec 2: Integration by Parts (7.1)
Recall the product rule for differentiable functions,

$$
\begin{equation*}
\left(e^{3 x} \sin x\right)^{\prime}=3 e^{3 x} \sin x+e^{3 x} \cos x \tag{1}
\end{equation*}
$$

We can write the general formula as such,

$$
\begin{equation*}
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \tag{2}
\end{equation*}
$$

Let's integrate both sides and see what happens,

$$
\begin{align*}
\int \frac{d}{d x}[f(x) g(x)] d x & =\int\left[f(x) g^{\prime}(x)+g(x) f^{\prime}(x)\right] d x \tag{3}\\
f(x) g(x) & =\int f(x) g^{\prime}(x) d x+\int g(x) f^{\prime}(x) d x \tag{4}
\end{align*}
$$

Integration by Parts (IBP) Formula. Rearranging the above and set $u=f(x)$ and $v=g(x)$. Thus by substitution $d u=f^{\prime}(x) d x$ and $d v=g^{\prime}(x) d x$ and the above formula becomes,

$$
\begin{equation*}
\int u d v=u v-\int v d u \tag{5}
\end{equation*}
$$

When attempting a problem that is integration by parts we want to guess the correct choices for u and $d v$ and from there differentiate to find $d u$ and integrate to find v. Here are some hints for the process (in no particular order):
(1) We should be able to integrate $d v$ without too much effort.
(2) Sometimes $d v=d x$.
(3) Sometimes we need to use by parts more than once.
(5) In general, polynomials are u.
(5) If your new integral is harder than your original you probably want to start over.
(6) We might want to use a substitution first!

EXAMPLE 1. Evaluate $\int x e^{x} d x$

EXAMPLE 2. Evaluate $\int \ln (x) d x$

EXAMPLE 3. Evaluate $\int\left(x^{2}+3 x\right) \sin (x) d x$

