Determine whether the following series converge absolutely, converge conditionally, or diverge. Be sure to clearly state what test you are using and the conclusion you come to.
(1) $\sum_{n=1}^{\infty} \frac{3^{n}-2^{n}}{4^{n}}$
(2) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\log n}{n^{2}}$
(3) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+3}{2 n^{2}-1}$
(4) $\sum_{n=1}^{\infty} \frac{2^{n}(2 n)!}{(n+5)!}$
(5) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
(6) $\sum_{n=1}^{\infty}(-1)^{n} \sqrt[n]{2-\frac{1}{n}}$

Compute the radius and interval of convergence for the following power series.
(1) $\sum_{n=1}^{\infty}(-1)^{n} x^{n}$
(2) $\sum_{n=1}^{\infty} n!(x-2)^{n}$
(3) $\sum_{n=1}^{\infty} \frac{1}{2^{n}}(x+1)^{n}$
(4) $\sum_{n=1}^{\infty} \frac{3^{n}}{2 n+1}(x-1)^{n}$

Determine the Taylor series for the given function about the indicated center, using any method of your choosing.
(1) $f(x)=e^{3 x}, x=0$
(2) $f(x)=\frac{1}{2-x}, x=1$
(3) $f(x)=\sin (x) \cos (x), x=0$
(4) $f(x)=\log \left(1+x^{2}\right), x=0$
(5) $f(x)=e^{x^{3}}, x=1$
(6) $f(x)=\tan x, x=0$

Compute the sum of the convergent series using your knowledge of Taylor series.
(1) $\sum_{n=0}^{\infty}(-1)^{n+1} \frac{1}{n+1}$
(2) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$
(3) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}$
(4) $\sum_{n=0}^{\infty} \frac{3^{n}}{n!}$

