US 12 solutions

1. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n+\sqrt{n}}$

Check absolute convergence:

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n+\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{n+\sqrt{n}}{n}=1
$$

Since $\sum \frac{1}{n}$ diverges $\Rightarrow \sum \frac{1}{n+\sqrt{n}}$ diverges by the limit comparison test $\Rightarrow \sum_{1}(-1)^{n+1} \frac{1}{n+\sqrt{n}}$ does not absolutely converge.

Check conditional convergence:

1. $\lim _{n \rightarrow \infty} \frac{1}{n+\sqrt{n}}=0$
2. $n+\sqrt{n}<n+1+\sqrt{n+1} \Rightarrow \frac{1}{n+\sqrt{n}}>\frac{1}{n+1+\sqrt{n+1}}$

So $S_{1}(-1)^{n+1} \frac{1}{n+\sqrt{n}}$ conditionally converges by the AST.
2. $\sum_{n=1}^{\infty} \frac{2^{2 n} \cdot n!}{5^{n+1}(n+1)!}=\sum_{n=1}^{\infty} \frac{2^{2 n}}{5^{n+1}(n+1)}$

Check absolute convergence $=$ converges:

$$
\lim _{n \rightarrow \infty} \frac{2^{2 n+3} \cdot 5^{n+1}(n+1)}{5^{n+2}(n+2) \cdot 2^{2 n+1}}=\lim _{n \rightarrow \infty} \frac{4(n+1)}{5(n+2)}=\frac{4}{5}
$$

So the series absolutely converges by the ratio test.
3. $\sum_{i n=2}^{\infty} \frac{1}{\log (n t)}$

Check for absolute convergence:

$$
\frac{1}{\log (n!)}=\frac{1}{\log 1+\log 2+\cdots+\log n} \geqslant \frac{1}{(n+1) \log n}
$$

Now we must check that $\sum_{n=2}^{\infty} \frac{1}{(n+1) \log n}$
diverges. Lets compare,

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1) \log n}}{\frac{1}{n \log n}}=\lim _{n \rightarrow \infty} \frac{n \log n}{(n+1) \log n}=1 \begin{array}{c}
\text { I dent show } \\
\text { this step but }
\end{array} \\
\text { were done }
\end{array}
$$

price cinwegn curargio boy "inegim test $\Rightarrow \sum_{1} \frac{1}{(n+1) \log n}$ diverges by LCT $\Rightarrow$ $\sum \frac{1}{\log (n!)}$ diverges by comparison test.
4. $\sum_{1 n=1}^{\infty} \cos (n \pi) \cos \left(\frac{\pi}{2}+\frac{1}{n}\right)=\sum_{1}(-1)^{n} \sin \left(\frac{1}{n}\right)$

Check for absolute convergent:

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}=1
$$

Since $\sum_{1} \frac{1}{n}$ diverges $\Rightarrow \sum \sin \left(\frac{1}{n}\right)$ diverges by the LCT.

Check for conditional convergence:

1. $\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)=0$
2. decreasing (draw the graph).

So $\sum_{1}(-1)^{n} \sin \left(\frac{1}{n}\right)$ conditional ty converges
by the AST.
5. $\sum_{n=1}^{\infty} \frac{5^{n}+2^{n}}{4^{n}+3^{n}}$

Check for absolute convergence $=$ convergence:

$$
\lim _{n \rightarrow \infty} \frac{\frac{5^{n}+2^{n}}{4^{n}+3^{n}}}{\frac{5^{n}}{4^{n}}}=\lim _{n \rightarrow \infty} \frac{1+\left(\frac{2}{5}\right)^{n}}{1+\left(\frac{3}{4}\right)^{n}}=1
$$

$\Sigma_{1}\left(\frac{5}{4}\right)^{n}$ diverges $\Rightarrow \sum_{1} \frac{5^{n}+2^{n}}{4^{n}+3^{n}}$ diverges by LCT.
6. $\sum_{n=1}^{\infty} \frac{3^{n} n^{2}}{n!}$

Check absolute convergence = convergence:

$$
\lim _{n \rightarrow \infty} \frac{3^{n+1}(n+1)^{2} \cdot n!}{(n+1)!3^{n} n^{2}}=\lim _{n \rightarrow \infty} \frac{3(n+1)^{2}}{(n+1) n^{2}}=0
$$

So by the ratio test it absolutely converges.
7. $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{3}}$

Check absolute convergence $=$ convergence:

$$
\lim _{n \rightarrow \infty} \frac{\frac{e^{l_{n}}}{n^{3}}}{\frac{1}{n^{3}}}=\lim _{n \rightarrow \infty} e^{1_{n}}=1
$$

So the series converges absolutely by the LCT.
8. $\sum_{n-1}^{\infty}(\sqrt[n]{2}-1)^{n}$

Check for absolute convergence $=$ convergence:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{2}-1=0
$$

So the senes converges absolutely by the root test.
9. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(2 n)!}{n^{n}}$

Check for absolute convergence:

$$
\lim \frac{(2 n+2)!\cdot n^{n}}{\lim (2 n+2)(2 n+1)} \cdot(n)^{n}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}(n+1)^{n} \cdot(2 n)!\quad & \quad(n+1) \\
& =\infty
\end{aligned}
$$

So by the ratio test the series diverges.
10. $\operatorname{Sin}_{i=1}^{\infty} \frac{\sqrt{n}(1+n)}{n^{2}+3^{n}}$

Check for absolute convergence:

$$
\begin{aligned}
& \frac{\sqrt{n}(1+n)}{n^{2}+3^{n}} \leq \frac{\sqrt{n}(1+n)}{3^{n}} \quad \begin{array}{l}
\text { use the ratio } \\
\\
\text { test on this. } \\
\lim _{n \rightarrow \infty} \frac{\sqrt{n+1}(2+n) \cdot 3^{n}}{3^{n+1} \cdot \sqrt{n}(1+n)}=\lim _{n \rightarrow \infty} \frac{1}{3} \cdot \frac{\sqrt{n+1}(2+n)}{\sqrt{n}(1+n)}=\frac{1}{3} .
\end{array} . . .
\end{aligned}
$$

By the ratio test, $\sum \frac{\sqrt{n}(1+n)}{3^{n}}$ converges
$\Rightarrow$ by the direct comparison test $\sum_{1} \frac{\sqrt{n}(1+n)}{n^{2}+3^{n}}$
converges absolutely.

