Lecture 21: notes

Monday, July 22, 2019 9:27 PM

Defn. A series Zian is absolutely convergent if the sense Ellan | convergus. I take the absolute value of the terms Ex1. Does the series $\Xi_{1n-1}^{\infty} \frac{(-1)^n}{n^2}$ converge absolutely? The series absolutely converges of the series $S_{n=1}^{\infty} \left| \frac{(-1)^n}{h^2} \right| = S_{n=1}^{\infty} \frac{1}{h^2} \quad \text{converges}.$ Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (by the p-test), the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ absolutely converges. Ex2. Does series Zin=1 n absolutely converge? The series $\sum_{n=1}^{\infty} \left| \frac{(1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges (by the p-teoA) so the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ does NOT

mosourery converge.

Note that if a series Sian has positive terms, then absolute convergence and convergence are the same thing.

Defn. a series Stan is conditionally convergent if it converges, but does not absolutely converge.

Only alternating series can conditionally converge!

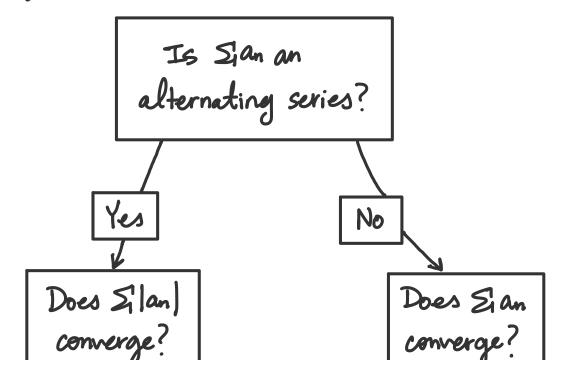
Ex3. Does the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log n}$ absolutely converge or conditionally converge?

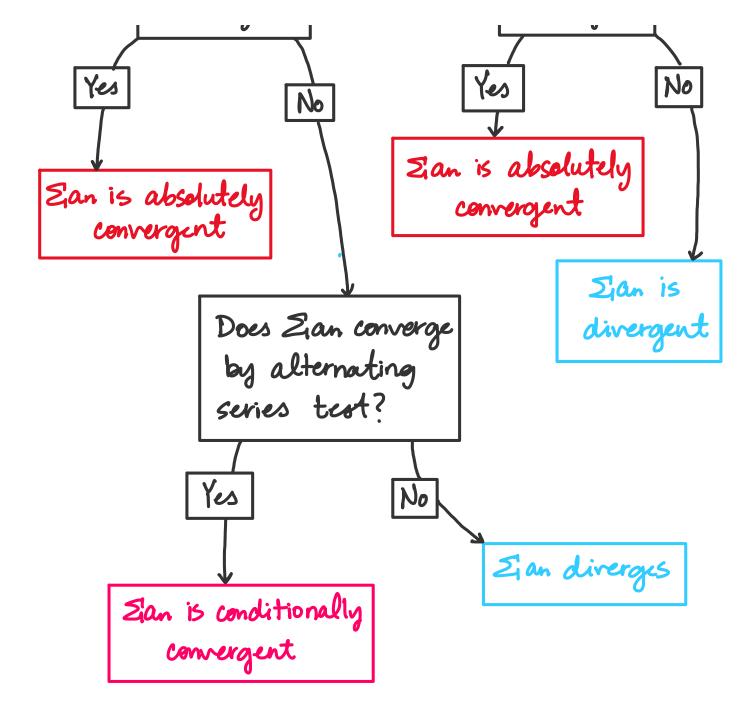
Let's look at whether it absolutely converges

or continuous first, first, $\sum_{n=2}^{\infty} \left| \frac{(-1)^n}{n \log n} \right| = \sum_{n=2}^{\infty} \frac{1}{n \log n}$ $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ So we see that Z [nlogn] diverges (by the

integral test).
However
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log n}$$
 converges (by the AST)
1. $\lim_{n \to \infty} \frac{1}{n \log n} = 0$
2. $n \log n < (n+1) \log (n+1)$
 $\Rightarrow \frac{1}{n \log n} > \frac{1}{(n+1) \log (n+1)}$
So $\sum_{n \log n}$ conditionally converges.

Given a series Sfan here are the steps to defermine absolute convergence or conditional convergence.





Let's introduce some new test,

The ratio test.
(i) If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then the

series
$$2i_{n+1}a_{n}$$
 is absolutely convergent.
(ii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_{n}} \right| = L > 1$ or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_{n}} \right| = \infty$,
then the series $2i_{n}a_{n}$ diverges.
(iii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_{n}} \right| = 1$, then the ratio
test is noonclusive.
Ext! $2i_{n+1}^{\infty} \frac{n^{2}}{2^{n}}$
 $a_{n} = \frac{n^{2}}{2^{n}}$, $a_{n+1} = \frac{(n+1)^{2}}{2^{n+1}} = \frac{n^{2}+2n+1}{2\cdot2^{n}}$
 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_{n}} \right| = \lim_{n\to\infty} \frac{n^{2}+2n+1}{2\cdot2^{n}}$
 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_{n}} \right| = \lim_{n\to\infty} \frac{n^{2}+2n+1}{2\cdot2^{n}}$
 $\lim_{n\to\infty} 2n^{n} \frac{n^{2}+2n+1}{2\cdot2^{n}} = \lim_{n\to\infty} \frac{2n^{n}(n^{2}+2n+1)}{2\cdot2^{n}\cdotn^{2}}$
Since $L = \frac{1}{2}$, the series is absolutely
convergent by the ratio test.

inc racio post mans its minis topologie:

$$E_{x} = \sum_{n \to \infty} \frac{1}{n^{2}}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_{n}} \right| = \lim_{n \to \infty} \frac{1}{(n+1)^{2}}$$

$$= \lim_{n \to \infty} \frac{n^{2}}{n^{2}} = 1.$$

The ratio fert is inconclusive!

. . ..

The mot test. (i) If lim Jan = L<1, then Zan absolutely converges. (ii) If $\lim_{n \to \infty} \sqrt{|a_n|} = L > 1$ or $\lim_{n \to \infty} \sqrt{|a_n|} = \infty$, then the series Sian is divergent. (iii) If n=00 land = 1, the root test is inconclusive.

$$E_{\underline{x}\underline{b}} \cdot \mathcal{E}_{1\underline{n}=1}^{\infty} \left(\frac{2\underline{n}+3}{3\underline{n}+2}\right)^{n}$$

$$a_{n} = \left(\frac{2\underline{n}+3}{3\underline{n}+2}\right)^{n} \implies n[\underline{n}] = \frac{2\underline{n}+3}{3\underline{n}+2}$$

$$\lim_{n \to \infty} \frac{2\underline{n}+3}{3\underline{n}+2} = \frac{2}{3}$$
Since L<1 the series is absolutely convergent.