Problem Solutions

1. Let A and B be sets, and $f : A \to B$ a function between them. For $S, T \subseteq A$, show that $f(S \cap T) \subseteq f(S) \cap f(T)$. Find an example for which this inclusion is proper.

Solution. $f(S \cap T) = \{ f(x) | x \in S \cap T \}$. If $x \in S \cap T$, then $x \in S$ and $x \in T$, so $f(x) \in f(S)$ and $f(x) \in f(T)$. This implies $f(x) \in f(S) \cap f(T)$, which completes the proof.

Let $f : \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^2$, $S = [-1, 0]$, and $T = [0, 1]$. Then $S \cap T = \{0\}$, $f(S \cap T) = 0$, and $f(S) \cap f(T) = [0, 1]$.

2. Give an example of a function $f : \mathbb{Q} \to \mathbb{Q}$ that is:

(a) bijective

Solution. Let f be the function that sends 0 to 0 and sends r to $1/r$ for $r \neq 0$. f is a bijection: $1/r = 1/s$ if and only if $r = s$, so f is injective, and for $r \in \mathbb{Q} - \{0\}$, $f(1/r) = r$ (and $f(0) = 0$), so f is surjective.

(b) one-to-one but not onto

Solution. Let f be the function $f(x) = x^3$. It is not onto because 2 is not in the range. It is injective because it is a strictly increasing function: if $x > y$, then $f(x) > f(y)$. So the only way for $f(x) = f(y)$ is for $x = y$.

(c) surjective but not injective

Solution. Let f be the function that acts as the identity on non-integers and non-positive integers, and sends each positive integer n to $n - 1$. Then it is not injective, because $f(0) = f(1) = 0$. Non-integers and non-positive integers are clearly in the range; each positive integer n is also in the range, since $f(n + 1) = n$. Thus, it is surjective.

(d) neither one-to-one nor onto.

Solution. Let f be the function $f(x) = x^2$. It is not onto, since the range consists of non-negative rationals. It is not one-to-one since $f(1) = f(-1) = 1$.

3. Find a simple formula or rule to describe the n^{th} term of the following sequences.

(a) $-1, 5, -9, 13, -17, \ldots$: $a_n = (-1)^n(4n - 3)$

(b) $8, 10, 13, 17, 22, 28, \ldots$: $a_n = n + a_{n-1}$

(c) $2, 16, 54, 128, 250, 432, 686 \ldots$: $a_n = 2n^3$

4. Show that if $f : A \to B$ and $g : B \to C$ are bijections, then so is $g \circ f$.

Solution. First, we show \(g \circ f \) is one-to-one. Suppose \(x, y \in A \) and \(g(f(x)) = g(f(y)) \). Since \(g \) is a bijection, and in particular is injective, this implies \(f(x) = f(y) \). As \(f \) is a bijection, this implies \(x = y \).

Next, we show surjectivity. Let \(z \in C \). We would like to produce an element of \(A \) that is sent to \(z \) by \(g \circ f \). Since \(g \) is surjective, there exists \(y \in B \) such that \(g(y) = z \). Since \(f \) is surjective and \(y \) is in the codomain of \(f \), there exists \(x \in A \) such that \(f(x) = y \). Now we have \(g(f(x)) = g(y) = z \).

5. Let \(2\mathbb{Z} \) denote the set of even integers. Show that \(\mathbb{Z} \times \mathbb{Z} \) and \(2\mathbb{Z} \) have the same cardinality.

(Hint: you may want to compose a number of different bijections)

Solution. First, we find a bijection between \(2\mathbb{Z} \) and \(\mathbb{Z} \), and another bijection between \(\mathbb{Z} \times \mathbb{Z} \) and \(\mathbb{Z}^+ \). From lecture, there is a bijection from \(\mathbb{Z}^+ \) to \(\mathbb{Z} \), so by composing these bijections, we’ll get a bijection from \(\mathbb{Z} \times \mathbb{Z} \) to \(2\mathbb{Z} \).

Let \(f : \mathbb{Z} \rightarrow 2\mathbb{Z} \) be the function \(f(x) = 2x \). \(f \) is injective since if \(f(x) = f(y) \), then \(2x = 2y \), which implies \(x = y \). \(f \) is also surjective, since for \(y \in 2\mathbb{Z} \), \(y = 2x \) for some \(x \in \mathbb{Z} \) by the definition of odd. So \(f(x) = 2x = y \).

To describe \(g : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}^+ \), we draw a picture (above). We draw an infinite path (in green) starting at \((0,0)\) and winding about the origin. \(g \) sends the \(n \)th point in this path to \(n \). Intuitively speaking, it’s clear that this function is a bijection; to really prove it, we’d need to write down a more concrete rule for where \(g \) sends the point \((i,j)\).

Let \(h : \mathbb{Z}^+ \rightarrow \mathbb{Z} \) be the bijection described in lecture.

Then \(f \circ h \circ g : \mathbb{Z} \times \mathbb{Z} \rightarrow 2\mathbb{Z} \) is a bijection, since a composition of bijections is a bijection, which implies the two sets have the same cardinality.

6. Suppose \(A \) and \(B \) are disjoint countable sets. Is \(A \cup B \) countable? \(A \times B \)?

Solution. The answer to both questions is yes.

Let \(f : A \rightarrow \mathbb{Z}^+ \) and \(g : B \rightarrow \mathbb{Z}^+ \) be bijections (these functions exist by the assumption that \(A \) and \(B \) are countable). Let \(h : A \cup B \rightarrow \mathbb{Z} \) be the function that takes an element \(a \in A \) to \(-f(a) \) and takes an element \(b \in B \) to \(g(b) - 1 \). \(h \) is well-defined, since \(A \) and \(B \) are disjoint.
Injectivity of h: if $h(x) = h(y)$ for some $x, y \in A \cup B$, then either both x and y are in A or they’re both in B, since $h(A)$ consists of negative numbers and $h(B)$ consists of nonnegative numbers. It then follows from the injectivity of f and g that $x = y$.

The surjectivity of h follows immediately from the fact that f and g have inverses. For example, let $n \in \mathbb{Z}$ be nonnegative. We want $x \in A \cup B$ such that $h(x) = n$; since $n \geq 0$, x would be in B, so in fact we are looking for $x \in B$ such that $g(x) - 1 = n$ or, equivalently, $g(x) = n + 1$. Applying g^{-1} to both sides gives that $x = g^{-1}(n+1)$. The argument for surjectivity of h on negative integers is similar.

Let $p : A \rightarrow \mathbb{Z}$ and $q : B \rightarrow \mathbb{Z}$. Note that these functions exist because \mathbb{Z} is countable. Let $r : A \times B \rightarrow \mathbb{Z} \times \mathbb{Z}$ be the function that takes $(a, b) \in A \times B$ to $(p(a), q(b)) \in \mathbb{Z} \times \mathbb{Z}$. From Problem 5, $\mathbb{Z} \times \mathbb{Z}$ is countable, so to show $A \times B$ is countable, it suffices to show that r is a bijection.

Injectivity of r: Suppose $r(a, b) = r(c, d)$ for $(a, b), (c, d) \in A \times B$. Then $(p(a), q(b)) = (p(c), q(d))$, which is true if and only if $p(a) = p(c)$ and $q(b) = q(d)$. Since p and q are injective, this implies $a = c$ and $b = d$, which in turn implies $(a, b) = (c, d)$.

Surjectivity of r: Let $(m, n) \in \mathbb{Z} \times \mathbb{Z}$. Then by the surjectivity of p and q, there exists $x \in A$ and $y \in B$ such that $p(x) = m$ and $q(y) = n$. $r(x, y) = (m, n)$, so r is surjective.