Problem Solutions

1. Let $P(x)$ be the statement “x lives north of Dwight,” where the domain of x consists of all students in your small group. Find the truth values of $P(x)$ for all x in the domain.

2. Choose 3 propositional functions $F(j)$, $G(j)$, and $H(j)$ where the domain of j is all dogs. Translate the following statements into English and find their truth value.

(a) $\forall j F(j)$
(b) $\exists j (G(j) \rightarrow H(j))$
(c) $\forall j ((F(j) \lor H(j)) \rightarrow \neg G(j))$
(d) $\exists j (\neg F(j) \land G(j)) \lor \forall j H(j)$

Solution. Let $F(j)$ be “j is a good dog,” $G(j)$ be “j barks wildly at street-cleaning trucks,” and $H(j)$ be “j does not like walks.”

(a) Every dog is a good dog. True.
(b) There is a dog that either does not like walks or does not bark wildly at street-cleaning trucks. True (probably). (This is using the logical equivalence $p \rightarrow q \equiv \neg p \lor q$.)
(c) Dogs either do not bark wildly at street-cleaning trucks or are bad dogs who like walks. False. (Using De Morgan’s laws and $p \rightarrow q \equiv \neg p \lor q$).
(d) Either there is a bad dog who barks wildly at street-cleaning trucks or no dogs like walks. False because all dogs are good dogs and at least one dog likes walks.

3. Let $S(x, y)$ be the statement “x has asked y a question” and let $P(x)$ be the statement “x is a student,” where the domain is all Math 55 GSIs and students and Professor Williams. Translate the following statements into symbols.

(a) Professor Williams has asked Melissa a question.
(b) Professor Williams has asked everyone a question.
(c) At least one student has asked another student a question.
(d) Nobody has asked every student a question.
(e) There is a student who has never been asked a question.

Solution. (a) $S(\text{Professor Williams, Melissa})$
(b) $\forall y S(\text{Professor Williams, } y)$
(c) $\exists x \exists y (P(x) \land P(y) \land S(x, y))$
(d) $\neg \exists x (\forall y (P(y) \land S(x, y)))$
(e) \(\exists y (P(y) \land \forall x \neg S(x, y)) \) or, equivalently, \(\exists y (P(y) \land \neg \exists x S(x, y)) \)

4. Show that \(\forall x P(x) \lor \forall x Q(x) \) and \(\forall x (P(x) \lor Q(x)) \) are not logically equivalent.

Solution. To show that these statements are not logically equivalent, we need to find a domain for the two statements such that they have different truth values on that domain.

Let the domain consist of two elements, \(j \) and \(k \) such that \(P(j) \) is true, \(P(k) \) is false, \(Q(j) \) is false, and \(Q(k) \) is true. Then the statement \(\forall x (P(x) \lor Q(x)) \) is true. However, \(j \) is a counterexample to \(\forall x P(x) \) and \(k \) is a counterexample to \(\forall x Q(x) \) so the disjunction \(\forall x P(x) \lor \forall x Q(x) \) is false.

5. Express the negations of each of these statements so that all negation symbols are in front of predicates. (Hint: remember De Morgan’s Laws)

(a) \(\neg (\forall x \exists y P(x, y) \land \forall x \exists y Q(x, y)) \)

Solution.
\[
\neg (\forall x \exists y P(x, y) \land \forall x \exists y Q(x, y)) \equiv \neg (\forall x \exists y P(x, y)) \lor \neg (\forall x \exists y Q(x, y)) \\
\equiv \exists x (\neg \exists y P(x, y)) \lor \exists x (\neg \exists y Q(x, y)) \\
\equiv \exists x \forall y \neg P(x, y) \lor \exists x \forall y \neg Q(x, y)
\]

(b) \(\neg \exists y (S(y) \lor \forall x \neg R(x, y)) \)

Solution.
\[
\neg \exists y (S(y) \lor \forall x \neg R(x, y)) \equiv \forall y (\neg (S(y) \lor \forall x \neg R(x, y)) \\
\equiv \forall y (\neg S(y) \land \neg \forall x \neg R(x, y)) \\
\equiv \forall y (\neg S(y) \land \exists x R(x, y))
\]

6. Consider the argument “If \(n \) is a real number such that \(n > 1 \), then \(n^2 > 1 \). Suppose that \(n^2 > 1 \). Then \(n > 1 \).” Is it valid? What if the last two sentences were instead “Suppose that \(n^2 < 1 \). Then \(n < 1 \).”?

Solution. The first version is not a valid argument; it is the fallacy that \(((p \rightarrow q) \land q) \rightarrow p \), which is not a tautology. The second version is a valid argument; it is \textit{modus tollens}.