Find the solution of the DEs.

1. \(xy' - 2y = x^2 \)
 \[x
eq 0 \]

 Soln: While this is a first order linear DE, it is not in the correct form, so we divide through by \(x \):

 \[
 y' - \frac{2}{x}y = x
 \]

 \[
 y' - \frac{2}{x}y = x
 \]

 \[
 P(x) = -\frac{2}{x}
 \]

 \[
 \int P(x) \, dx = -2 \ln(x)
 \]

 \[
 e^{\int P(x) \, dx} = e^{-2 \ln(x)} = \frac{1}{x^2} \] using ln rules

 So the integrating factor is \(\frac{1}{x^2} \).

 Multiplying through by the integrating factor gives

 \[
 y' x^{-2} - 2x^{-3}y = x^{-1}
 \]

 \[
 \frac{d}{dx}(y x^{-2}) = x^{-1}
 \]

 Integrating both sides:

 \[
 \int \frac{d}{dx}(y x^{-2}) \, dx = \int x^{-1} \, dx
 \]

 \[
 y x^{-2} = \ln(x) + C
 \]

 \[
 y = x^2 \ln(x) + Cx^2
 \]

2. \(xy' + y = x \ln x \)

 Soln: Again, we divide through by \(x \) to get the DE in the correct form

 \[
 xy' + y = x \ln x
 \]

 \[
 P(x) = \frac{1}{x} \], so \(\int P(x) \, dx = \ln x
 \]

 \[
 e^{\int P(x) \, dx} = e^{\ln x} = x \], so the integrating factor is \(x \).

 Multiplying through by the integrating factor gives

 \[
 xy' + y = x \ln x
 \]

 \[
 \frac{d}{dx}(xy) = x \ln x
 \]

 Integrating both sides gives

 \[
 xy = \int x \ln x \, dx
 \]
To evaluate $\int x \ln x \, dx$, we integrate by parts.

$u = \ln x, \quad dv = x \, dx$
$du = \frac{1}{x} \, dx, \quad v = \frac{x^2}{2}$

\[
\int x \ln x \, dx = \frac{x^2}{2} \ln x - \frac{1}{2} \int x \, dx
\]

\[
= \frac{x^2}{2} \ln x - \frac{x^2}{4} + C
\]

So

\[
x = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C
\]

\[
y = \frac{x^2}{2} \ln x - \frac{x}{4} + C
\]