1. Find the equation of a function with holes (removable discontinuities) at \(x = 0 \) and \(x = \pm 1 \), vertical asymptotes at \(x = 2 \) and \(x = 4 \) and horizontal asymptote \(y = \frac{7}{4} \).

Solution: Holes mean the numerator must include \(\frac{x(x-1)(x+1)}{x(x-1)(x+1)} \); vertical asymptotes mean the denominator must include \((x-2)(x-4) \) as well.

\[
f(x) = \frac{x(x-1)(x+1)}{x(x-1)(x+1)(x-2)(x-4)}
\]

doesn't have the required non-zero horizontal asymptote. To have a horizontal asymptote, degree of the top \(\frac{x(x-1)(x+1)}{} \) & bottom must be equal, but degree of the numerator of \(f \) is 3, degree of denominator is 5, so we need to multiply \(f \) by some quadratic, say \(x^2 + 4x + 2 \). \(f(x)(x^2 + 4x + 2) \) has a horizontal asymptote at 1, to get a horizontal asymptote at \(\frac{7}{4} \), we should multiply by \(\frac{7}{4} \).

So \(g(x) = \frac{7x(x-1)(x+1)(x^2 + 4x + 2)}{9x(x-1)(x+1)(x-2)(x-4)} \) is such a function.

2. \(f(x) = \frac{1}{\sqrt{1-x}} \). Find \(f''(-1) \) by finding \(f''(a) \) & plugging in \(-1\) for \(a \).

(Use \(f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} \). Then find \(f''(-1) \) using the alternate definition of a derivative: \(f''(-1) = \lim_{x \to -1} \frac{f(x)-f(-1)}{x-(-1)} \).

Solution: \(f'(a) = \lim_{h \to 0} \frac{1}{\sqrt{1-(a+h)}} - \frac{1}{\sqrt{1-a}} \)

\[
= \lim_{h \to 0} \frac{\sqrt{1-a} - \sqrt{1-a-h}}{(1-a-h)(1-a-h)} \cdot \frac{1}{\sqrt{1-a}}
\]

\[
= \lim_{h \to 0} \frac{1-a-(1-a-h)}{(1-a-h)(1-a)} \cdot \frac{1}{\sqrt{1-a}}
\]

\[
= \lim_{h \to 0} \frac{h}{(1-a-h)(1-a)} \cdot \frac{1}{\sqrt{1-a}}
\]

\[
= \lim_{h \to 0} \frac{1}{(1-a-h)(1-a)} \cdot \frac{1}{\sqrt{1-a}} = \frac{1}{2(1-a)^{3/2}}
\]

So \(f''(-1) = \frac{1}{2(1-(-1))^{3/2}} = \frac{1}{2(2)^{3/2}} = \frac{1}{2^{7/2}} \).
\[f'(1) = \lim_{x \to 1} \frac{1}{\sqrt{1-x}} - \frac{1}{\sqrt{2}} \]
\[= \lim_{x \to 1} \frac{\sqrt{2} - \sqrt{1-x}}{\sqrt{2} \cdot \sqrt{1-x}} \cdot \frac{\sqrt{2} + \sqrt{1-x}}{\sqrt{2} + \sqrt{1-x}} \]
\[= \lim_{x \to 1} \frac{2 - (1+x)}{(x+1)(\sqrt{2(1-x)})} \cdot \frac{\sqrt{2} + \sqrt{1-x}}{\sqrt{2} + \sqrt{1-x}} \]
\[= \lim_{x \to 1} \frac{1}{\sqrt{2(1-x)}(\sqrt{2} + \sqrt{1-x})} \]
\[= \frac{1}{\sqrt{4} (\sqrt{2} + \sqrt{2})} = \frac{1}{2 \cdot 2 \sqrt{2}} = \frac{1}{2 \sqrt{2}} . \]

3. \[g(t) = t^3 + 1 \] . Find \(g'(a) \).

Solution:
\[g'(a) = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} \]
\[= \lim_{h \to 0} \frac{(a+h)^3 + 1 - (a^3 + 1)}{h} \]
\[= \lim_{h \to 0} \frac{a^3 + 3a^2h + 3ah^2 + h^3 + 1 - a^3 - 1}{h} \]
\[= \lim_{h \to 0} \frac{2ah + h^2}{h} = \lim_{h \to 0} \frac{h(2a + h)}{h} = \lim_{h \to 0} 2ah = 2a . \]

4. There are 2 tangent lines of \(g(t) = t^3 + 1 \) that pass through the point \((0,0)\). What are the slopes of these 2 lines?

Solution: A line passing through the origin has an equation that looks like \(y = mx \). We're dealing with tangent lines, so \(M = g'(a) \) for some \(a \). We also know \((a, g(a))\) is on the tangent line. We just need to figure out what \(a \) is.

From problem 3, \(g'(a) = 2a \). So the equation for the tangent lines in question looks like \(y = 2ax \). Since the point \((a, g(a)) = (a, a^3 + 1)\) is on the line, we know \(a^3 + 1 = 2a(a) \) (plugging \((a, a^3 + 1)\) into \(y = 2ax\) for tangent line).

We use this to solve \(a^3 + 1 = 2a^2 \)
\[\Rightarrow a^3 - 2a^2 + 1 = 0 \]
\[\Rightarrow a^2(a - 2) + 1 = 0 \]
\[\Rightarrow (a^2 + 1)(a - 2) = 0 \]
\[\Rightarrow a = \pm 1 \text{ or } a = 2 . \]

So these tangent lines hit \(g \) at \(-1, 1\) and \((1, 1)\), respectively. The slope of the first is \(g'(-1) = -2 \) & the slope of the 2nd is \(g'(1) = 2 \).
For the f(x) graphed in A & B, is \(f'(1) \) larger or smaller than the slope of the secant line between \(x=1 \) & \(x=1+h \) \((h>0)\)?

What about the slope of the secant line between \(x=1-h \) & \(x=1 \) \((h>0)\)?

Soln:

(A) \(f'(1) \) greater than slope of secant line bet. \(x=1 \) & \(x=1+h \)

\(f'(1) \) smaller \(x=1-h \) & \(x=1 \)

(B) \(f'(1) \) smaller than slope of secant line bet. \(x=1 \) & \(x=1+h \)

\(f'(1) \) greater \(x=1-h \) & \(x=1 \)

Draw an example secant line & compare slope to slope of tangent line at \(f(1) \).

\(f'(1) \)