Combinatorics of \mathcal{X}-variables in finite type cluster algebras

arXiv:1803.02492
Slides available at www.math.berkeley.edu/~msb

Melissa Sherman-Bennett, UC Berkeley

AMS Fall Central Sectional Meeting 2018
Cluster varieties in 2 flavors: \mathcal{A}-varieties (with \mathcal{A}-variables) and \mathcal{X}-varieties (with \mathcal{X}-variables)

\mathcal{A}-variables \leftrightarrow cluster variables
\mathcal{X}-variables \leftrightarrow coefficients

There is a duality between \mathcal{A}-varieties and \mathcal{X}-varieties (GHKK (2018)), but on the algebraic side much less is understood about \mathcal{X}-variables

\mathcal{X}-variables appear naturally in total positivity and in scattering amplitudes in $\mathcal{N} = 4$ Super Yang-Mills theory (GGSVV (2014))
Let $\mathcal{F} \cong \mathbb{Q}(t_1, \ldots, t_n)$.

- An \mathcal{X}-seed Σ in \mathcal{F} is a pair (\mathbf{x}, B), where $\mathbf{x} = (x_1, \ldots, x_n)$ with $x_i \in \mathcal{F}$ and $B = (b_{ij})$ is a skew-symmetrizable $n \times n$ integer matrix.

- **Mutation** at $k \in \{1, \ldots, n\}$:

 \[
 (\mathbf{x}, B) \xrightarrow{\mu_k} (\mathbf{x}', B')
 \]

 where

 \[
 x_j' = \begin{cases}
 x_j^{-1} & \text{if } j = k \\
 x_j(x_k + 1)^{-b_{kj}} & \text{if } b_{kj} \leq 0 \\
 x_j(x_k^{-1} + 1)^{-b_{kj}} & \text{if } b_{kj} > 0
 \end{cases}
 \]

 and B' is obtained from B by matrix mutation at k.

M. Sherman-Bennett (UC Berkeley)
\mathcal{X}-variables in finite type
AMS Fall Sectionals 2018
Definitions

Let $\mathcal{F} \cong \mathbb{Q}(t_1, \ldots, t_n)$.

- An \mathcal{A}-seed Σ in \mathcal{F} is a pair (a, B), where $a = (a_1, \ldots, a_n)$ consists of algebraically independent elements of \mathcal{F} and $B = (b_{ij})$ is a skew-symmetrizable $n \times n$ integer matrix.

- **Mutation** at $k \in \{1, \ldots, n\}$:

 $$(a, B) \xrightarrow{\mu_k} (a', B')$$

 where

 $$a'_j = \begin{cases}
 a_k^{-1} \left(\prod_{b_{ik} > 0} a_i^{b_{ik}} + \prod_{b_{ik} < 0} a_i^{-b_{ik}} \right) & \text{if } j = k \\
 a_j & \text{if } j \neq k
 \end{cases}$$

 and B' is obtained from B by matrix mutation at k.
Seed Patterns

\mathbb{T}_n: n-regular tree with edges labeled with $1, \ldots, n$ so each vertex sees each label.

A seed pattern S is a collection of seeds $\{\Sigma_t\}_{t \in \mathbb{T}_n}$ such that if $t \xrightarrow{k} t'$ in \mathbb{T}_n, then $\Sigma'_t = \mu_k(\Sigma_t)$.

An \mathcal{A}-seed pattern is finite type if it contains finitely many seeds.
Theorem (Fomin–Zelevinsky (2003))

An \(A \)-seed pattern \(S(a, B) \) is finite type if and only if \(B \) is mutation equivalent to a matrix whose Cartan companion is a finite type Cartan matrix.

Further, there is a bijection between \(A \)-variables and almost positive roots (positive or negative simple) in the corresponding root system.

Combinatorics of finite type \(A \)-seed patterns of classical type are encoded in tagged triangulations of certain marked surfaces (Fomin–Shapiro–Thurston (2008)).
Motivation

Theorem (Fomin–Zelevinsky (2003))

An A-seed pattern $S(a, B)$ is finite type if and only if B is mutation equivalent to a matrix whose Cartan companion is a finite type Cartan matrix.

Further, there is a bijection between A-variables and almost positive roots (positive or negative simple) in the corresponding root system.

Combinatorics of finite type A-seed patterns of classical type are encoded in tagged triangulations of certain marked surfaces (Fomin–Shapiro–Thurston (2008)).

Question

Let $S(x, B)$ be an X-seed pattern of classical type. What can we say about its combinatorics?
Theorem (S.B. (2018))

Let S be an \mathcal{X}-seed pattern of classical type and let P be the corresponding marked surface. Then there is a bijection between the quadrilaterals (with a choice of diagonal) appearing in triangulations of P and the \mathcal{X}-variables of S.
The Answer

Theorem (S.B. (2018))

Let S be an \mathcal{X}-seed pattern of classical type and let P be the corresponding marked surface. Then there is a bijection between the quadrilaterals (with a choice of diagonal) appearing in triangulations of P and the \mathcal{X}-variables of S.

Classical types:

<table>
<thead>
<tr>
<th>Type</th>
<th>A_n</th>
<th>B_n, C_n</th>
<th>D_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\mathcal{X}(S)</td>
<td>$</td>
<td>$2\binom{n+3}{4}$</td>
</tr>
</tbody>
</table>

Exceptional types:

<table>
<thead>
<tr>
<th>Type</th>
<th>E_6</th>
<th>E_7</th>
<th>E_8</th>
<th>F_4</th>
<th>G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\mathcal{X}(S)</td>
<td>$</td>
<td>770</td>
<td>2100</td>
<td>6240</td>
</tr>
</tbody>
</table>
A-seed patterns of classical types

S a A-seed pattern of type $A_n (D_n)$, P an $(n+3)$-gon (punctured n-gon).

- $\{A$-variables of $S\} \leftrightarrow \{\text{arcs of tagged triangulations of } P\}$
- $\{\text{seeds } \Sigma \text{ in } S\} \leftrightarrow \{\text{triangulations } T \text{ of } P\}$. If Σ corresponds to T, the A-variables of Σ correspond to the arcs of T and the exchange matrix of Σ can be obtained from T.
- Mutating Σ at k corresponds to flipping the k^{th} arc in T.

There is an analogous story for types B_n, C_n involving triangulations preserved by a particular group action.
A surjection...

Let S be an \mathcal{X}-seed pattern of classical type, and P be the appropriate marked surface.

- Think of seeds (x, B) as triangulations T of P with arcs labeled by \mathcal{X}-variables (B is the signed adjacency matrix of T).
- Mutating/flipping an arc γ may change the labels of the arcs adjacent to γ.
- If we mutate away from the quadrilateral of an arc γ, the label of γ does not change.

$$x'_j = \begin{cases}
 x_j^{\frac{1}{b_{kj}}} & \text{if } j = k \\
 x_j(x_k + 1)^{-b_{kj}} & \text{if } b_{kj} \leq 0 \\
 x_j(x_k^{-1} + 1)^{-b_{kj}} & \text{if } b_{kj} > 0
\end{cases}$$
Let S be an \mathcal{X}-seed pattern of classical type, and P be the appropriate marked surface.

- Think of seeds (x, B) as triangulations T of P with arcs labeled by \mathcal{X}-variables (B is the signed adjacency matrix of T).
- Mutating/flipping an arc γ may change the labels of the arcs adjacent to γ.
- If we mutate away from the quadrilateral of an arc γ, the label of γ does not change.
A surjection...

Fact (Fomin–Shapiro–Thurston (2008))

Let T, T' be two tagged triangulations of a marked surface which both contain arcs τ_1, \ldots, τ_s. Then T' can be obtained from T by a sequence of arc flips avoiding τ_1, \ldots, τ_s.

So $\alpha : \{ q \cup \{ \gamma \} | q \text{ a quadrilateral with diagonal } \gamma \text{ in } P \} \to \mathcal{X}(S)$ is well-defined and surjective.
...which is injective.

Proposition

The \(\mathcal{X} \)-variables associated to distinct quadrilaterals are distinct.

Method of proof:

- Consider a particular \(\mathcal{A} \)-seed pattern \(\mathcal{R} \) of each type (can be found in e.g. *Intro. to cluster algebras*); \(\mathcal{A} \)-variables are rational functions on a vector space \(V \).
- Look at a related \(\mathcal{X} \)-seed pattern \(\mathcal{\hat{R}} \); \(\mathcal{X} \)-variables are rational functions of \(\mathcal{A} \)-variables in \(\mathcal{R} \).
- For any pair of \(\mathcal{X} \)-variables labeling diagonals of different quadrilaterals, verify that they are different functions on \(V \).
Corollaries and a Conjecture

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Type} & A_n & B_n, C_n & D_n \\
\hline
|\mathcal{X}| & 2\left(\frac{n+3}{4}\right) & \frac{1}{3}n(n+1)(n^2 + 2) & \frac{1}{3}n(n-1)(n^2 + 4n - 6) \\
|\mathcal{X}_{pc}| & n(n+1) & 2n^2 & 2n(n-1) \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Type} & E_6 & E_7 & E_8 & F_4 & G_2 \\
\hline
|\mathcal{X}| & 770 & 2100 & 6240 & 196 & 16 \\
|\mathcal{X}_{pc}| & 72 & 126 & 240 & 48 & 12 \\
\hline
\end{array}
\]

Note: \(|\mathcal{X}_{pc}|\) is the number of \(\mathcal{X}\)-variables when we replace + with “tropical plus” in the \(\mathcal{X}\)-variable mutation formulas. The values follow from results of (Speyer–Thomas (2013)).
Corollaries and a Conjecture

Corollary

Let S be an \mathcal{X}-seed pattern of type Z_n.

- The \mathcal{X}-variables in S are in bijection with ordered pairs of exchangeable \mathcal{A}-variables in an \mathcal{A}-seed pattern of type Z_n.
- The \mathcal{X}-variables in S are in bijection with ordered pairs of almost-positive roots with compatibility degree 1 in the root system of type Z_n.

Conjecture

Let T be a tagged triangulation of a marked surface (S, M), B the signed adjacency matrix of T, and $S := S(x, B)$. Then the following map is a bijection:

$$\alpha : \{q \cup \{\gamma\} | q \text{ a quadrilateral with diagonal } \gamma \text{ in } (S, M)\} \rightarrow \mathcal{X}(S).$$
References

