Combinatorics of cluster structures in Schubert varieties

arXiv:1902.00807
Slides available at www.math.berkeley.edu/~msb

M. Sherman-Bennett (UC Berkeley)
joint work with K. Serhiyenko and L. Williams

AMS Spring Eastern Sectional Meeting 2019
The set-up

Fix integers $0 < k < n$.

- $Gr_{k,n} := \{ V \subseteq \mathbb{C}^n : \dim(V) = k \}$
The set-up

Fix integers $0 < k < n$.

- $Gr_{k,n} := \{ V \subseteq \mathbb{C}^n : \dim(V) = k \}$
- $V \in Gr_{k,n} \mapsto$ full rank $k \times n$ matrix A whose rows span V
The set-up

Fix integers $0 < k < n$.

- $Gr_{k,n} := \{ V \subseteq \mathbb{C}^n : \dim(V) = k \}$
- $V \in Gr_{k,n} \mapsto$ full rank $k \times n$ matrix A whose rows span V
- $I \subseteq \{1, \ldots, n\}$ with $|I| = k$. The Plücker coordinate $P_I(V)$ is the maximal minor of A located in column set I.
Fix integers $0 < k < n$.

- $Gr_{k,n} := \{ V \subseteq \mathbb{C}^n : \dim(V) = k \}$
- $V \in Gr_{k,n} \mapsto$ full rank $k \times n$ matrix A whose rows span V
- $I \subseteq \{1, \ldots, n\}$ with $|I| = k$. The Plücker coordinate $P_I(V)$ is the maximal minor of A located in column set I.
- The Schubert cell
 $\Omega_I := \{ V \in Gr_{k,n} : P_I(V) \neq 0, \ P_J(V) = 0 \text{ for } J < I \}$
- The open Schubert variety $X_I^\circ := \Omega_I \setminus \{ V \in \Omega_I : P_I P_{I_2} \cdots P_{I_n} = 0 \}$
The set-up

Fix integers $0 < k < n$.

- $Gr_{k,n} := \{ V \subseteq \mathbb{C}^n : \dim(V) = k \}$
- $V \in Gr_{k,n} \mapsto$ full rank $k \times n$ matrix A whose rows span V
- $I \subseteq \{1, \ldots, n\}$ with $|I| = k$. The Plücker coordinate $P_I(V)$ is the maximal minor of A located in column set I.
- The Schubert cell
 $\Omega_I := \{ V \in Gr_{k,n} : P_I(V) \neq 0, \ P_J(V) = 0 \text{ for } J < I \}$
 The open Schubert variety $X_I^\circ := \Omega_I \setminus \{ V \in \Omega_I : P_I P_{I_2} \cdots P_{I_n} = 0 \}$
- Cluster algebra convention: Given a seed (x, Q) with x_{r+1}, \ldots, x_N frozen, $\mathcal{A}(x, Q)$ is the $\mathbb{C}[x_{r+1}^{\pm 1}, \ldots, x_N^{\pm 1}]$-algebra generated by the cluster variables.
Theorem (Scott ’06)

\(\mathbb{C}[\hat{\text{Gr}}_{k,n}] \) is a cluster algebra with seeds (consisting entirely of Plücker coordinates) given by Postnikov’s plabic graphs for \(\text{Gr}_{k,n} \).

(\(\hat{\text{Gr}}_{k,n} \) is the affine cone over \(\text{Gr}_{k,n} \) wrt Plücker embedding.)
Motivation

Theorem (Scott ’06)

\[\mathbb{C}[\widehat{\text{Gr}_{k,n}}] \text{ is a cluster algebra with seeds (consisting entirely of Plücker coordinates) given by Postnikov’s plabic graphs for } \text{Gr}_{k,n}. \]

(\[\widehat{\text{Gr}_{k,n}} \text{ is the affine cone over } \text{Gr}_{k,n} \text{ wrt Plücker embedding.} \]

Conjecture (Muller–Speyer ’16)

Scott’s result holds if you replace \(\text{Gr}_{k,n} \) with an open positroid variety \(\pi_k(\mathcal{R}_{v,w}) \).
Main result

Theorem (SSW ’19)

\[\mathbb{C}[\hat{X}_i^\circ] \text{ is a cluster algebra, with seeds (consisting entirely of Plücker coordinates) given by plabic graphs for } X_i^\circ. \]

(\(\hat{X}_i^\circ\) is the affine cone over \(X_i^\circ\) wrt Plücker embedding.)
Main result

Theorem (SSW ’19)

\[\mathbb{C}[\hat{X}_i^\circ] \text{ is a cluster algebra, with seeds (consisting entirely of Plücker coordinates) given by plabic graphs for } X_i^\circ. \]

(\(\hat{X}_i^\circ\) is the affine cone over \(X_i^\circ\) wrt Plücker embedding.)

- More general result for open “skew Schubert” varieties \(\pi_k(R_{v,xv})\), where seeds for the cluster structure are given by *generalized* plabic graphs.
Main result

Theorem (SSW ’19)

$\mathbb{C}[\hat{X}_i^\circ] \text{ is a cluster algebra, with seeds (consisting entirely of Plücker coordinates) given by plabic graphs for } X_i^\circ.$

(\hat{X}_i° is the affine cone over X_i° wrt Plücker embedding.)

• More general result for open “skew Schubert” varieties $\pi_k(\mathcal{R}_{\nu,x\nu})$, where seeds for the cluster structure are given by generalized plabic graphs.

• We use a result of (Leclerc ’16), who shows that coordinate rings of certain open Richardson varieties in the complete flag variety are cluster algebras.
Postnikov’s plabic graphs

A plabic graph of type \((k, n)\) is a planar graph embedded in a disk with

- \(n\) boundary vertices labeled \(1, \ldots, n\) clockwise.
- Internal vertices colored white and black.
- Boundary vertices are adjacent to a unique internal vertex.

![Diagram of a plabic graph](image)
A plabic graph of type \((k, n)\) is a planar graph embedded in a disk with

- \(n\) boundary vertices labeled 1, \ldots, \(n\) clockwise.
- Internal vertices colored white and black.
- Boundary vertices are adjacent to a unique internal vertex.

For generalized plabic graphs, we drop the condition that boundary vertices are labeled 1, \ldots, \(n\) clockwise.
Let G be a reduced plabic graph of type (k, n). The dual quiver $Q(G)$ is obtained by

1. Put a frozen vertex in each boundary face of G and a mutable vertex in each internal face.
Let G be a reduced plabic graph of type (k, n). The dual quiver $Q(G)$ is obtained by

1. Put a frozen vertex in each boundary face of G and a mutable vertex in each internal face.
Let G be a reduced plabic graph of type (k, n). The dual quiver $Q(G)$ is obtained by

1. Put a frozen vertex in each boundary face of G and a mutable vertex in each internal face.
2. Add arrows across properly colored edges so you “see white vertex on the left.”
Let G be a reduced plabic graph of type (k, n). The dual quiver $Q(G)$ is obtained by

1. Put a frozen vertex in each boundary face of G and a mutable vertex in each internal face.
2. Add arrows across properly colored edges so you “see white vertex on the left.”
A trip in G is a walk from boundary vertex to boundary vertex that
- turns maximally left at white vertices
- turns maximally right at black vertices
A *trip* in G is a walk from boundary vertex to boundary vertex that
- turns maximally left at white vertices
- turns maximally right at black vertices
Variables from plabic graphs

A *trip* in G is a walk from boundary vertex to boundary vertex that

- turns maximally left at white vertices
- turns maximally right at black vertices

Aside: The trip permutation of this graph is

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
2 & 4 & 5 & 1 & 3
\end{array}
\]
Face labels

If the trip T ends at j, put a j in all faces of G to the left of T. Do this for all trips.

![Diagram with labeled faces]
Face labels

If the trip T ends at j, put a j in all faces of G to the left of T. Do this for all trips.
Face labels

If the trip T ends at j, put a j in all faces of G to the left of T. Do this for all trips.

Fact: (Postnikov ’06) All faces of G will be labeled by subsets of the same size (which is k).

To get cluster variables, we interpret each face label as a Plücker coordinate.
• Each reduced plabic graph corresponds to a unique positroid variety, determined by its trip permutation.
• The plabic graphs for X_I° have trip permutation

$$\pi_I = j_1j_2 \cdots j_{n-k}i_1i_2\cdots i_k$$

where $I = \{i_1 < i_2 < \cdots < i_k\}$ and $\{1, \ldots, n\} \setminus I = \{j_1 < j_2 < \cdots < j_{n-k}\}$.
The trip permutation of G is 24513, so this is a seed for $X_{\{1,3\}}$.

So in the end...
Theorem

Let \(G \) be a reduced plabic graph corresponding to \(\chi_I \), and let \((x, Q(G))\) be the associated seed. Then \(A(x, Q(G)) = \mathbb{C}[\chi_I] \).

Corollaries:

• Classification of when \(A(x, Q(G)) \) is finite type
Applications

Theorem

Let G be a reduced plabic graph corresponding to X_i°, and let $(x, Q(G))$ be the associated seed. Then $A(x, Q(G)) = \mathbb{C}[X_i^\circ]$.

Corollaries:

- Classification of when $A(x, Q(G))$ is finite type
- From (Muller ’13) and (Muller-Speyer ’16), $A(x, Q(G))$ is locally acyclic, so it’s locally a complete intersection and equal to its upper cluster algebra
Theorem

Let G be a reduced plabic graph corresponding to X_i°, and let $(x, Q(G))$ be the associated seed. Then $A(x, Q(G)) = \mathbb{C}[X_i^\circ]$.

Corollaries:

- Classification of when $A(x, Q(G))$ is finite type
- From (Muller ’13) and (Muller-Speyer ’16), $A(x, Q(G))$ is locally acyclic, so it’s locally a complete intersection and equal to its upper cluster algebra
- From (Ford-Serhiyenko ’18), $A(x, Q(G))$ has green-to-red sequence, so satisfies the EGM property of (GHKK ’18) and has a canonical basis of θ-functions parameterized by g-vectors.
More questions

- What about the other positroid varieties?
More questions

- What about the other positroid varieties?
- How do seeds/cluster structure from generalized plabic graphs compare to seeds/cluster structure from normal plabic graphs?
More questions

• What about the other positroid varieties?
• How do seeds/cluster structure from generalized plabic graphs compare to seeds/cluster structure from normal plabic graphs?
• Is there a combinatorial characterization of compatibility of Plücker's for Schubert, skew Schubert? (In the Schubert case, there are seeds in \(\mathcal{A}(\mathfrak{x}, Q(G)) \) that consist entirely of Plücker coordinates, but the coordinates are not weakly separated.)