Coxeter Matroids

An Introduction

Mario Sanchez

November 11, 2020

Coxeter combinatorics is the field which studies extensions of common combinatorial objects to other Lie types.

Examples of objects in this field:

- Signed Graphs (Zaslavsky)
- Parsets (Reiner)
- Generalized Associahedra and Cambrian Fans (Fomin-Zelevinsky, Reading-Speyer)
- Signed Set Partitions
- Coxeter Generalized Permutahedra (Ardila-Castillo-Eur-Postnikov)

Coxeter combinatorics is a **dream** not a promise! It is possible that some objects do not have generalizations.

Matroids

Matroids are among the hardest objects to generalize in this way due to their many definitions.

Some important definitions and where they are used:

- Basis Exchange Key to the intuition of matroids capturing linear independence.
- Flat Partition Axiom Used in the Chow ring of matroids and in tropical geometry.
- Rank Function Captures the idea of dimension. Important everywhere
- **Greedy Algorithm** Idea behind the thin stratification of Gr(*k*, *n*).
- Circuit Axiom Connected to Whitney's original motivation of graph coloring.
- Matroid Polytope Relates matroids to generalized permutahedra

Fixing Notation

I will use the following notation:

- Let Φ be a root system (usually of type A, B, C, or D).
- Let $\Delta = [n]$ denote a simple system.
- Let *W* be its Weyl group with presentation given by simple reflections *s_i*
- Let \mathcal{A} be the Coxeter arrangement of Φ . (Sometimes viewed as a fan).
- For any $I \subseteq [n]$, let W_I be the parabolic subgroup of W given by I.
- Let \leq denote the Bruhat order on W and W/W_I (induced by Δ).
- For any $w \in W$, let \leq_w denote the shifted Bruhat order

$$v_1W_I \leq_w v_2W_I \iff w^{-1}v_1W_I \leq w^{-1}v_2W_I.$$

Our current definition of Coxeter matroids comes from Gelfand and Serganova's study of thin stratifications of G/P.

Definition (Coxeter Greedy Algorithm)

A **Coxeter Matroid** of type (W, W_I) is a subset $M \subseteq W/W_I$ such that for any $w \in W$ there is a unique \leq_w -minimal element in M.

Let's compare this to our previous definitions.

Relation to Ordinary Matroids

To compare this to ordinary matroids, let $W = S_n$ with the standard presentation and $I = [n] - \{k\}$. Note $W_I \cong S_k \times S_{n-k}$.

Relation to Ordinary Matroids

To compare this to ordinary matroids, let $W = S_n$ with the standard presentation and $I = [n] - \{k\}$. Note $W_I \cong S_k \times S_{n-k}$.

We can identify W/W_I with the permutations with single descent at position k (in one-line notation).

$$S_4/W_{[4]-2} = \{12|34, 13|24, 14|23, 23|14, 24|13, 34|12\}.$$

We can further identify this with subsets of [n] of cardinality k.

$$S_4/W_{[4]-2} = \{12, 13, 14, 23, 24, 34\}$$

Relation to Ordinary Matroids

To compare this to ordinary matroids, let $W = S_n$ with the standard presentation and $I = [n] - \{k\}$. Note $W_I \cong S_k \times S_{n-k}$.

We can identify W/W_I with the permutations with single descent at position k (in one-line notation).

$$S_4/W_{[4]-2} = \{12|34, 13|24, 14|23, 23|14, 24|13, 34|12\}.$$

We can further identify this with subsets of [n] of cardinality k.

$$S_4/W_{[4]-2} = \{12, 13, 14, 23, 24, 34\}$$

Exercise: Show that the Bruhat order on S_n/W_l corresponds to the Gale order on subsets of size k of [n].

A shift of the Bruhat order corresponds to a different choice of linear order on [n].

Let $W = S_5$ and $I = [5] - \{2, 4\}$. Then W/W_I can be identified with permutations with a descent at 2 and 4.

 $S_5/W_{5-\{2,4\}} = \{12|34|5,13|24|5,\ldots,34|12|5,35|14|2,\ldots\}.$

We can further identify these with 2-step flags where the first flag has cardinality 2 and the second has cardinality 4.

$$S_5/W_{5-\{2,4\}} = \{12 \subseteq 1234, 13 \subseteq 1234, \dots, 34 \subseteq 1234, 35 \subseteq 1345, \dots\}.$$

Annoying Exercise: Show that the Bruhat order on W/W_I corresponds to the Gale order of flags.

Relation to Symplectic Matroids

Let W be the type C_5 Weyl group. This corresponds to signed permutations which are maps $\phi : [\pm 5] \rightarrow [\pm 5]$ such that $\phi(\overline{i}) = \overline{\phi(i)}$. In one-line notation:

 $C_5 = \{31452, 3\overline{1}4\overline{5}2, 123\overline{4}5, \ldots\}.$

We will use the generators of C_5 given by s_1, s_2, s_3, s_4, s_5 where $s_i = (i, i + 1)$ for $1 \le i \le 4$ and $s_5 = (5, \overline{5})$.

Relation to Symplectic Matroids

Let W be the type C_5 Weyl group. This corresponds to signed permutations which are maps $\phi : [\pm 5] \rightarrow [\pm 5]$ such that $\phi(\overline{i}) = \overline{\phi(i)}$. In one-line notation:

 $C_5 = \{31452, 3\overline{1}4\overline{5}2, 123\overline{4}5, \ldots\}.$

We will use the generators of C_5 given by s_1, s_2, s_3, s_4, s_5 where $s_i = (i, i + 1)$ for $1 \le i \le 4$ and $s_5 = (5, \overline{5})$.

Let $I = [5] - \{5\}$, then $W_I = S_5$ and $W/W_I \cong (\mathbb{Z}/2\mathbb{Z})^5$ can be identified with admissible subsets of $[\pm 5]$ of size 5.

 $W/W_I = \{12\overline{3}45, 123\overline{45}, \overline{123}45, \ldots\}.$

Let $I = [5] - \{2\}$, then W/W_I can be identified with admissible subsets of size 2

$$W/W_I = \{13, 2\overline{3}, 14, \overline{25}, \ldots\}.$$

Last time we discussed the Gale order on signed subsets. Consider the usual linear order

$$\overline{n} < \overline{n-1} < \cdots \overline{1} < 1 < \cdots < n.$$

A signed subset $\{i_1 < i_2 < \cdots < i_k\}$ is less than a signed subset $\{j_1 < \cdots < j_k\}$ in the **Gale order** iff $i_\ell < j_\ell$ for all $1 \le \ell \le k$.

Last time we discussed the Gale order on signed subsets. Consider the usual linear order

$$\overline{n} < \overline{n-1} < \cdots \overline{1} < 1 < \cdots < n.$$

A signed subset $\{i_1 < i_2 < \cdots < i_k\}$ is less than a signed subset $\{j_1 < \cdots < j_k\}$ in the **Gale order** iff $i_\ell < j_\ell$ for all $1 \le \ell \le k$.

Claim/Exercise: The Bruhat order on W/W_I of type C_n agrees with the Gale order on admissible subsets.

The shifted Bruhat orders agree with different admissible linear orders on $[\pm n]$. Admissible here means that if i < j then $\overline{j} < \overline{i}$.

Here are some examples coming from Bruhat intervals.

- 1. The trivial examples W/W_I and any singleton $\{wW_I\}$.
- 2. The (shifted) Coxeter Schubert matroid $\Omega_{wW_{l}} = \{vW_{l} \mid wW_{l} \leq_{u} vW_{l}\} \text{ for any } u \in W.$
- 3. The interval Coxeter matroid $M = [w_1 W_I, w_2 W_I]$ with $w_1 \le w_2$.
- 4. Let $\pi : W \to W/W_l$ be the natural projection map. Let $[w_1, w_2]$ be an interval in W. Then, $\pi([w_1, w_2])$ is a Coxeter matroid polytope.

Here are some examples coming from Bruhat intervals.

- 1. The trivial examples W/W_I and any singleton $\{wW_I\}$.
- 2. The (shifted) Coxeter Schubert matroid $\Omega_{wW_{l}} = \{vW_{l} \mid wW_{l} \leq_{u} vW_{l}\} \text{ for any } u \in W.$
- 3. The interval Coxeter matroid $M = [w_1 W_I, w_2 W_I]$ with $w_1 \le w_2$.
- 4. Let $\pi : W \to W/W_I$ be the natural projection map. Let $[w_1, w_2]$ be an interval in W. Then, $\pi([w_1, w_2])$ is a Coxeter matroid polytope.

Exercise: Convince yourself that there are examples of (4) that are not examples of (3).

Beautifully, the ordinary matroids arising from example (4) are exactly the class of positroids (Tsukerman-Williams).

Coxeter Matroid Polytopes

Now fix a crystallographic root system Φ . Then, we have an associated lattice Λ called the weight lattice of Φ . This lattice is generated by certain lattice points ρ_1, \ldots, ρ_n called the **fundamental** weights of Φ . They are in bijection with the simple roots.

For any $I \subseteq [n]$ let $\rho_I = \sum_{i \in I} \rho_i$.

Definition (Type A_{n-1} Root Datum)

$$\Phi = \{e_i - e_j\}_{i,j \in [n]}$$

•
$$\Delta = \{e_1 - e_2, \dots, e_{n-1} - e_n\}$$

• Fundamental weights: $\{e_1, e_1 + e_2, \ldots, e_1 + e_2 + \cdots + e_n\}$.

Coxeter Matroid Polytopes

Now fix a crystallographic root system Φ . Then, we have an associated lattice Λ called the weight lattice of Φ . This lattice is generated by certain lattice points ρ_1, \ldots, ρ_n called the **fundamental** weights of Φ . They are in bijection with the simple roots.

For any $I \subseteq [n]$ let $\rho_I = \sum_{i \in I} \rho_i$.

Definition (Type A_{n-1} Root Datum)

$$\Phi = \{e_i - e_j\}_{i,j \in [n]}$$

•
$$\Delta = \{e_1 - e_2, \dots, e_{n-1} - e_n\}$$

Fundamental weights: $\{e_1, e_1 + e_2, \ldots, e_1 + e_2 + \cdots + e_n\}$.

Fact: There is a natural action of W on the weight lattice. Further the sum ρ_I is stabilized by $W_{[n]\setminus I}$. Thus, the orbit of ρ_I is in bijection with $W/W_{[n]\setminus I}$.

Definition

A **Coxeter matroid polytope** of type (W, W_l) is a polytope whose vertices are contained in the orbit of $\rho_{[n]\setminus l}$ under W and whose edge directions are parallel to the roots in Φ .

Definition (Type A_{n-1} Root Datum)

$$\Phi = \{e_i - e_j\}_{i \neq j \in [n]}$$

$$\Delta = \{e_1 - e_2, \ldots, e_{n-1} - e_n\}$$

• Fundamental weights: $\{e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_n\}$. (Slight lie)

For example, the fundamental weight $\rho_k = e_1 + \cdots + e_k$ is stabilized by $W_{[n]\setminus k} \cong S_k \times S_{n-k}$. The orbits correspond to the different 0-1 vectors with exactly k ones. This agrees with the usual matroid polytopes.

Type B_n Coxeter Matroid Polytopes

Definition (Type B_n Root Datum)

- $W \cong \{ \text{signed permutations of } n \}$
- $\Phi = \{\pm e_i \pm e_j\}_{i \neq j \in [n]} \cup \{\pm e_i\}_{i \in [n]}$
- $\Delta = \{e_1 e_2, \dots, e_{n-1} e_n, e_n\}$
- Fundamental weights:

 $\{e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_{n-1}, (e_1 + e_2 + \dots + e_n)/2\}.$

Type B_n Coxeter Matroid Polytopes

Definition (Type B_n Root Datum)

• $W \cong \{ signed permutations of n \}$

•
$$\Phi = \{\pm e_i \pm e_j\}_{i \neq j \in [n]} \cup \{\pm e_i\}_{i \in [n]}$$

•
$$\Delta = \{e_1 - e_2, \dots, e_{n-1} - e_n, e_n\}$$

Fundamental weights:

 $\{e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_{n-1}, (e_1 + e_2 + \dots + e_n)/2\}.$

Consider the $(W, W_{[n]\setminus n})$ Coxeter matroid polytopes of type B_n . The vertices are the orbits of $(e_1 + e_2 + \cdots + e_n)/2$.

Hence a polytope is a type B_n Coxeter matroid polytope if and only if the vertices are contained in the vertices of the cube $[-1/2, 1/2]^n$ and edge directions are parallel to $\pm e_i \pm e_j$ or e_i .

Exercise: Visualize some two and three dimensional examples of these polytopes.

Definition (Type B_n Root Datum)

- $W \cong \{ signed permutations of n \}$
- $\Phi = \{\pm e_i \pm e_j\}_{i \neq j \in [n]} \cup \{\pm e_i\}_{i \in [n]}$

•
$$\Delta = \{e_1 - e_2, \dots, e_{n-1} - e_n, e_n\}$$

• Fundamental weights: $\{e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_{n-1}, (e_1 + e_2 + \dots + e_n)/2\}.$

Another example are the (W, W_I) Coxeter matroid polytopes where n = 4 and $I = [n] \setminus 2$. Then we are studying polytopes whose vertices are 0, 1, -1 vectors with exactly two non-zero entries and whose edge directions are parallel to the roots.

Definition (Type C_n Root Datum)

- $W \cong \{ signed permutations of n \}$
- $\Phi = \{\pm e_i \pm e_j\}_{i \neq j \in [n]} \cup \{\pm 2e_i\}_{i \in [n]}$

•
$$\Delta = \{e_1 - e_2, \dots, e_{n-1} - e_n, 2e_n\}$$

• Fundamental weights: $\{e_1, e_1 + e_2, \dots, e_1 + e_2 + \dots + e_{n-1}, e_1 + e_2 + \dots + e_n\}.$

The $(W, W_{[n]\setminus n})$ Coxeter matroid polytopes are polytopes whose vertices are subsets of the $[-1, 1]^n$ cube and whose edge directions are parallel to the roots.

Note the slight difference from the type B_n situation.

The vertices of a Coxeter matroid polytope are a subset of the orbit $W \cdot \rho_I$ which is in bijection with W/W_I .

Theorem

Under this bijection, the vertices of a Coxeter matroid polytope form a Coxeter matroid. Further, every Coxeter matroid arises in this way.

The vertices of a Coxeter matroid polytope are a subset of the orbit $W \cdot \rho_I$ which is in bijection with W/W_I .

Theorem

Under this bijection, the vertices of a Coxeter matroid polytope form a Coxeter matroid. Further, every Coxeter matroid arises in this way.

Spooky thought: Note that the concept of a Coxeter matroid polytope distinguishes between type B_n and type C_n root systems whereas the greedy algorithm Coxeter matroid does not.

A choice of simple system of Φ gives a choice of a fundamental chamber of \mathcal{A} . This will always be a simplicial cone generated by the vectors ρ_1, \ldots, ρ_n .

Every ρ_i is the minimal lattice point in the ray corresponding to ρ_i . Further, ρ_I is the minimal lattice point in the interior of the cone generated by $\{\rho_i\}_{i \in I}$.

Previously, we saw that every cone of the fundamental chamber is indexed by a parabolic subgroup W_I . The point $\rho_{[n]/I}$ gives a minimal interior lattice point in the cone indexed by W_I .

Let G be a simple Lie group. For every sum of fundamental weights ρ_I , there is an irreducible representation $V(\rho_I)$ of G corresponding to ρ_I .

The representation $V(\rho_I)$ has a vector space decomposition into **weight spaces** indexed by the Λ -lattice points contained in the convex hull of $W \cdot \rho_I$.

$$V(\rho_I) = \bigoplus_{\alpha \in \Lambda \cap \operatorname{conv}(W \cdot \rho_I)} V_{\alpha}.$$

Let G be a simple Lie group. For every sum of fundamental weights ρ_I , there is an irreducible representation $V(\rho_I)$ of G corresponding to ρ_I .

The representation $V(\rho_I)$ has a vector space decomposition into **weight spaces** indexed by the Λ -lattice points contained in the convex hull of $W \cdot \rho_I$.

$$V(\rho_I) = \bigoplus_{\alpha \in \Lambda \cap \operatorname{conv}(W \cdot \rho_I)} V_{\alpha}.$$

Let η be a vector in the weight space corresponding to ρ_I . Let P be the subgroup of G that stabilizes this weight space. This gives an embedding of $G/P \to \mathbb{P}(V(\rho_I))$ by $g \mapsto g \cdot \eta$.

This generalizes the Plücker embedding of the Grassmannian.

Geometric Intution

Take $G = SL_4$ and the representation with heighest weight ρ_2 . Then, G/P corresponds to the Grassmannian.

The weights can be indexed by subsets of size 2.

Geometric Intution

Take $G = SL_3$ and the representation with heighest weight $\rho_{\{1,2\}}$.

The extremal weights are indexed by elements of $w \in W$ and then we have the center weight.

Every choice of $w \in W$ induces a stratification of G/P into cells indexed by elements in W/W_I called the **Bruhat decomposition**.

Gelfand and Serganova studied the **thin stratification** which is the simultaneous refinement of the Bruhat decomposition over all choices of $w \in W$.

Every choice of $w \in W$ induces a stratification of G/P into cells indexed by elements in W/W_I called the **Bruhat decomposition**.

Gelfand and Serganova studied the **thin stratification** which is the simultaneous refinement of the Bruhat decomposition over all choices of $w \in W$.

Theorem (Gelfand-Serganova)

Fix W and W_I. Consider the embedding of $G/P \mapsto \mathbb{P}(V(\rho_{[n]\setminus I}))$. Two elements $x, y \in G/P$ lie in the same thin stratum if and only if for every coordinate indexed by a weight α in the orbit of $\rho_{[n]\setminus I}$ we have that $p_{\alpha}(x) = 0$ if and only if $p_{\alpha}(y) = 0$.

Gelfand-Serganova's Definition of Coxeter Matroid Polytopes

The definition of Coxeter matroid polytope I have given disagrees with Gelfand and Serganova's definition slightly.

Definition (Gelfand-Serganova Coxeter Matroid Polytope)

A (W, W_I) **Coxeter matroid polytope** is a polytope whose vertices lie in the orbit of any point ω_I in the interior of the face of the fundamental chamber indexed by W_I and whose edge directions are parallel to the roots of Φ .

Theorem (Borovik)

The combinatorial type of a Coxeter matroid polytope does not depend on the choice of ω_I .

The version I stated has the advantage of giving a "canonical" choice of ω_I at the cost(?) of introducing the weight lattice.

What do we know about the different cryptomorphic definitions of Coxeter matroids?

- Basis Exchange The näive notion fails where bases correspond to the elements of W/W_I that are in the matroid. Not even true in type A_n. Mysteriously everything seems to work for the minuscle cases.
- Flat Partition Axiom What is a flat?
- Rank Function There is a notion of Coxeter submodular functions which is close to giving an answer!
- **Greedy Algorithm** Our main approach. However, some of the geometric connections to the flag varieties fail!
- Circuit Axiom What is a circuit?
- Matroid Polytope We have two slightly different definitions.
 Either way, we understand this best.