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Coxeter Combinatorics

Coxeter combinatorics is the field which studies extensions of
common combinatorial objects to other Lie types.

Examples of objects in this field:
Signed Graphs (Zaslavsky)
Parsets (Reiner)
Generalized Associahedra and Cambrian Fans (Fomin-Zelevinsky,
Reading-Speyer)
Signed Set Partitions
Coxeter Generalized Permutahedra (Ardila-Castillo-Eur-Postnikov)

Coxeter combinatorics is a dream not a promise! It is possible that
some objects do not have generalizations.
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Matroids

Matroids are among the hardest objects to generalize in this way due
to their many definitions.

Some important definitions and where they are used:
Basis Exchange - Key to the intuition of matroids capturing
linear independence.
Flat Partition Axiom - Used in the Chow ring of matroids and in
tropical geometry.
Rank Function - Captures the idea of dimension. Important
everywhere
Greedy Algorithm - Idea behind the thin stratification of
Gr(k, n).
Circuit Axiom - Connected to Whitney’s original motivation of
graph coloring.
Matroid Polytope - Relates matroids to generalized
permutahedra
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Fixing Notation

I will use the following notation:
Let Φ be a root system (usually of type A, B, C, or D).
Let ∆ = [n] denote a simple system.
Let W be its Weyl group with presentation given by simple
reflections si
Let A be the Coxeter arrangement of Φ. (Sometimes viewed as a
fan).
For any I ⊆ [n], let WI be the parabolic subgroup of W given by
I .
Let ≤ denote the Bruhat order on W and W /WI (induced by ∆).
For any w ∈W , let ≤w denote the shifted Bruhat order

v1WI ≤w v2WI ⇐⇒ w−1v1WI ≤ w−1v2WI .
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Coxeter Greedy Algorithm

Our current definition of Coxeter matroids comes from Gelfand and
Serganova’s study of thin stratifications of G/P .

Definition (Coxeter Greedy Algorithm)

A Coxeter Matroid of type (W ,WI ) is a subset M ⊆W /WI such
that for any w ∈W there is a unique ≤w -minimal element in M.

Let’s compare this to our previous definitions.
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Relation to Ordinary Matroids

To compare this to ordinary matroids, let W = Sn with the standard
presentation and I = [n]− {k}. Note WI

∼= Sk × Sn−k .

We can identify W /WI with the permutations with single descent at
position k (in one-line notation).

S4/W[4]−2 = {12|34, 13|24, 14|23, 23|14, 24|13, 34|12}.

We can further identify this with subsets of [n] of cardinality k .

S4/W[4]−2 = {12, 13, 14, 23, 24, 34}

Exercise: Show that the Bruhat order on Sn/WI corresponds to the
Gale order on subsets of size k of [n].

A shift of the Bruhat order corresponds to a different choice of linear
order on [n].
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Relation to Flag Matroids

Let W = S5 and I = [5]− {2, 4}. Then W /WI can be identified with
permutations with a descent at 2 and 4.

S5/W5−{2,4} = {12|34|5, 13|24|5, . . . , 34|12|5, 35|14|2, . . .}.

We can further identify these with 2-step flags where the first flag has
cardinality 2 and the second has cardinality 4.

S5/W5−{2,4} = {12 ⊆ 1234, 13 ⊆ 1234, . . . , 34 ⊆ 1234, 35 ⊆ 1345, . . .}.

Annoying Exercise: Show that the Bruhat order on W /WI

corresponds to the Gale order of flags.
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Relation to Symplectic Matroids

Let W be the type C5 Weyl group. This corresponds to signed
permutations which are maps φ : [±5]→ [±5] such that φ(i) = φ(i).
In one-line notation:

C5 = {31452, 31452, 12345, . . .}.

We will use the generators of C5 given by s1, s2, s3, s4, s5 where
si = (i , i + 1) for 1 ≤ i ≤ 4 and s5 = (5, 5).

Let I = [5]− {5}, then WI = S5 and W /WI
∼= (Z/2Z)5 can be

identified with admissible subsets of [±5] of size 5.

W /WI = {12345, 12345, 12345, . . .}.

Let I = [5]− {2}, then W /WI can be identified with admissible
subsets of size 2

W /WI = {13, 23, 14, 25, . . .}.
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Relation to Symplectic Matroids

Last time we discussed the Gale order on signed subsets. Consider the
usual linear order

n < n − 1 < · · · 1 < 1 < · · · < n.

A signed subset {i1 < i2 < · · · < ik} is less than a signed subset
{j1 < · · · < jk} in the Gale order iff i` < j` for all 1 ≤ ` ≤ k .

Claim/Exercise: The Bruhat order on W /WI of type Cn agrees
with the Gale order on admissible subsets.

The shifted Bruhat orders agree with different admissible linear orders
on [±n]. Admissible here means that if i < j then j < i .

8 / 23



Relation to Symplectic Matroids

Last time we discussed the Gale order on signed subsets. Consider the
usual linear order

n < n − 1 < · · · 1 < 1 < · · · < n.

A signed subset {i1 < i2 < · · · < ik} is less than a signed subset
{j1 < · · · < jk} in the Gale order iff i` < j` for all 1 ≤ ` ≤ k .

Claim/Exercise: The Bruhat order on W /WI of type Cn agrees
with the Gale order on admissible subsets.

The shifted Bruhat orders agree with different admissible linear orders
on [±n]. Admissible here means that if i < j then j < i .

8 / 23



Examples

Here are some examples coming from Bruhat intervals.
1. The trivial examples W /WI and any singleton {wWI}.
2. The (shifted) Coxeter Schubert matroid

ΩwWI
= {vWI | wWI ≤u vWI} for any u ∈W .

3. The interval Coxeter matroid M = [w1WI ,w2WI ] with w1 ≤ w2.
4. Let π : W →W /WI be the natural projection map. Let [w1,w2]

be an interval in W . Then, π([w1,w2]) is a Coxeter matroid
polytope.

Exercise: Convince yourself that there are examples of (4) that are
not examples of (3).

Beautifully, the ordinary matroids arising from example (4) are exactly
the class of positroids (Tsukerman-Williams).
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Coxeter Matroid Polytopes

Now fix a crystallographic root system Φ. Then, we have an
associated lattice Λ called the weight lattice of Φ. This lattice is
generated by certain lattice points ρ1, . . . , ρn called the fundamental
weights of Φ. They are in bijection with the simple roots.

For any I ⊆ [n] let ρI =
∑

i∈I ρi .

Definition (Type An−1 Root Datum)

Φ = {ei − ej}i ,j∈[n]

∆ = {e1 − e2, . . . , en−1 − en}
Fundamental weights: {e1, e1 + e2, . . . , e1 + e2 + · · ·+ en}.

Fact: There is a natural action of W on the weight lattice. Further
the sum ρI is stabilized by W[n]\I . Thus, the orbit of ρI is in bijection
with W /W[n]\I .
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Coxeter Matroid Polytopes

Definition
A Coxeter matroid polytope of type (W ,WI ) is a polytope whose
vertices are contained in the orbit of ρ[n]\I under W and whose edge
directions are parallel to the roots in Φ.
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Type An Coxeter Matroid Polytopes

Definition (Type An−1 Root Datum)

Φ = {ei − ej}i 6=j∈[n]

∆ = {e1 − e2, . . . , en−1 − en}
Fundamental weights: {e1, e1 + e2, . . . , e1 + e2 + · · ·+ en}.
(Slight lie)

For example, the fundamental weight ρk = e1 + · · ·+ ek is stabilized by
W[n]\k ∼= Sk × Sn−k . The orbits correspond to the different 0-1 vectors
with exactly k ones. This agrees with the usual matroid polytopes.
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Type Bn Coxeter Matroid Polytopes

Definition (Type Bn Root Datum)

W ∼= {signed permutations of n}
Φ = {±ei ± ej}i 6=j∈[n] ∪ {±ei}i∈[n]

∆ = {e1 − e2, . . . , en−1 − en, en}
Fundamental weights:
{e1, e1 + e2, . . . , e1 + e2 + · · ·+ en−1, (e1 + e2 + · · ·+ en)/2}.

Consider the (W ,W[n]\n) Coxeter matroid polytopes of type Bn. The
vertices are the orbits of (e1 + e2 + · · ·+ en)/2.

Hence a polytope is a type Bn Coxeter matroid polytope if and only if
the vertices are contained in the vertices of the cube [−1/2, 1/2]n and
edge directions are parallel to ±ei ± ej or ei .
Exercise: Visualize some two and three dimensional examples of these
polytopes.
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Another example are the (W ,WI ) Coxeter matroid polytopes where
n = 4 and I = [n]\2. Then we are studying polytopes whose vertices
are 0, 1,−1 vectors with exactly two non-zero entries and whose edge
directions are parallel to the roots.
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Type Cn Coxeter Matroid Polytopes

Definition (Type Cn Root Datum)

W ∼= {signed permutations of n}
Φ = {±ei ± ej}i 6=j∈[n] ∪ {±2ei}i∈[n]

∆ = {e1 − e2, . . . , en−1 − en, 2en}
Fundamental weights:
{e1, e1 + e2, . . . , e1 + e2 + · · ·+ en−1, e1 + e2 + · · ·+ en}.

The (W ,W[n]\n) Coxeter matroid polytopes are polytopes whose
vertices are subsets of the [−1, 1]n cube and whose edge directions are
parallel to the roots.

Note the slight difference from the type Bn situation.

15 / 23



Coxeter Matroid Polytopes

The vertices of a Coxeter matroid polytope are a subset of the orbit
W · ρI which is in bijection with W /WI .

Theorem
Under this bijection, the vertices of a Coxeter matroid polytope form a
Coxeter matroid. Further, every Coxeter matroid arises in this way.

Spooky thought: Note that the concept of a Coxeter matroid
polytope distinguishes between type Bn and type Cn root systems
whereas the greedy algorithm Coxeter matroid does not.
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What is the role of ρI?

A choice of simple system of Φ gives a choice of a fundamental
chamber of A. This will always be a simplicial cone generated by the
vectors ρ1, . . . , ρn.

Every ρi is the minimal lattice point in the ray corresponding to ρi .
Further, ρI is the minimal lattice point in the interior of the cone
generated by {ρi}i∈I .

Previously, we saw that every cone of the fundamental chamber is
indexed by a parabolic subgroup WI . The point ρ[n]/I gives a minimal
interior lattice point in the cone indexed by WI .
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Geometric Intuition

Let G be a simple Lie group. For every sum of fundamental weights ρI ,
there is an irreducible representation V (ρI ) of G corresponding to ρI .

The representation V (ρI ) has a vector space decomposition into
weight spaces indexed by the Λ-lattice points contained in the convex
hull of W · ρI .

V (ρI ) =
⊕

α∈Λ∩conv(W ·ρI )

Vα.

Let η be a vector in the weight space corresponding to ρI . Let P be
the subgroup of G that stabilizes this weight space. This gives an
embedding of G/P → P(V (ρI )) by g 7→ g · η.

This generalizes the Plücker embedding of the Grassmannian.
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Geometric Intution

Take G = SL4 and the representation with heighest weight ρ2. Then,
G/P corresponds to the Grassmannian.

The weights can be indexed by subsets of size 2.
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Geometric Intution

Take G = SL3 and the representation with heighest weight ρ{1,2}.

The extremal weights are indexed by elements of w ∈W and then we
have the center weight.
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Geometric Intuition

Every choice of w ∈W induces a stratification of G/P into cells
indexed by elements in W /WI called the Bruhat decomposition.

Gelfand and Serganova studied the thin stratification which is the
simultaneous refinement of the Bruhat decomposition over all choices
of w ∈W .

Theorem (Gelfand-Serganova)

Fix W and WI . Consider the embedding of G/P 7→ P(V (ρ[n]\I )). Two
elements x , y ∈ G/P lie in the same thin stratum if and only if for
every coordinate indexed by a weight α in the orbit of ρ[n]\I we have
that pα(x) = 0 if and only if pα(y) = 0.
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Gelfand-Serganova’s Definition of Coxeter Matroid
Polytopes

The definition of Coxeter matroid polytope I have given disagrees with
Gelfand and Serganova’s definition slightly.

Definition (Gelfand-Serganova Coxeter Matroid Polytope)

A (W ,WI ) Coxeter matroid polytope is a polytope whose vertices
lie in the orbit of any point ωI in the interior of the face of the
fundamental chamber indexed by WI and whose edge directions are
parallel to the roots of Φ.

Theorem (Borovik)

The combinatorial type of a Coxeter matroid polytope does not
depend on the choice of ωI .

The version I stated has the advantage of giving a "canonical" choice
of ωI at the cost(?) of introducing the weight lattice.

22 / 23



What about the other definitions?

What do we know about the different cryptomorphic definitions of
Coxeter matroids?

Basis Exchange - The näive notion fails where bases correspond
to the elements of W /WI that are in the matroid. Not even true
in type An. Mysteriously everything seems to work for the
minuscle cases.
Flat Partition Axiom - What is a flat?
Rank Function - There is a notion of Coxeter submodular
functions which is close to giving an answer!
Greedy Algorithm - Our main approach. However, some of the
geometric connections to the flag varieties fail!
Circuit Axiom - What is a circuit?
Matroid Polytope - We have two slightly different definitions.
Either way, we understand this best.
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