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Symplectic Matroids

Let J = [n] U [n]*. A subset K C J is admissible if
KNnK*=10.

Let J;, denote the collection of k-element admissible subsets of
J.

The hyperoctahedral group BC, is the set of bijections

w : J — J such that w(i*) = w(i)* for all ¢ € [n].

For each w € BC),, we get the admissible ordering <% given
by w(n*) < .- <" w(1*) < w(l) < -+ < w(n).

Given A = {a; <" --- <" ai} and B ={by <" --- <YW by} in Jj,
we write A <% B if a1 <Y by,...,a <% by.

A symplectic matroid of rank k is a collection B C Ji such
that for every w € BC),, there is a unique maximal element of B
with respect to the ordering <". The sets in B are the bases.
A symplectic matroid of rank n is a Lagrangian matroid.
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Example of a Symplectic Matroid

Let n =k = 3. Let B=Js\ {[3]}.

To see that B is a Lagrangian matroid, choose w € BCj3, and let
L ={w(),w(2),w(3)}. If L # [3], then L is the unique
maximal element of B with respect to <".

If L = [3], then {w(1*),w(2),w(3)} is the unique maximal
element of B with respect to <%.
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Root Systems

Let
O ={+2¢:1<i<n}U{tete:1<ij<ni#j}

denote the root system of type C),. The book uses the type-C
root system instead of type B, which doesn’t matter since we
will only care about directions (not lengths) of roots.
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Root Systems

Let
O ={+2¢:1<i<n}U{tete:1<ij<ni#j}

denote the root system of type C),. The book uses the type-C
root system instead of type B, which doesn’t matter since we
will only care about directions (not lengths) of roots.

Also,
IT={2€e1,e0 —€1,...,6n — €n_1}

is the set of simple roots.
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Symplectic Matroid Polytopes

For A€ Ji, let 64 = ZjeA €j, where €jx = —¢;.
Lemma: If A < B, then dg — d4 is a nonnegative linear
combination of positive roots.

The converse is false, but it becomes true if we assume dg — d 4
is parallel to a root.

Theorem (Gelfand—Serganova Theorem for Symplectic
Matroids)

Let B C Ji, and let A be the convex hull of {04 : A € B}. Then
B is a symplectic matroid if and only if all edges of A are
parallel to roots in ®.
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Isotropic Subspaces

The standard symplectic space is the vector space V' with
basis E = {e1,...,epn,€1%,...,ep+} and an anti-symmetric
bilinear form (-, -) satisfying (e;, e;) = 0 for all 4,j € J with

i # 7% and (e;, e;+) = —(ei+,¢;) = 1 for all i € [n].
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Isotropic Subspaces

The standard symplectic space is the vector space V' with
basis E = {e1,...,epn,€1%,...,ep+} and an anti-symmetric
bilinear form (-, -) satisfying (e;, e;) = 0 for all 4,j € J with

i # 7% and (e;, e;+) = —(ei+,¢;) = 1 for all i € [n].

We can represent a k-dimensional subspace of V' as the row-span

of a k X 2n matrix with columns indexed by 1,...,n,1%, ..., n*.

A subspace U of V is isotropic if (u,v) = 0 for all u,v € U.
Lemma: A subspace U of V is isotropic if and only if it can be
represented by a k x 2n matrix (A4, B) such that AB? is
symmetric.
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consider the collection B C Jj, of admissible k-subsets K such
that the k£ x k minor of (A, B) with column set K is nonzero.
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Representable Symplectic Matroids

Given a k x 2n matrix (A, B) with columns indexed by J,
consider the collection B C Jj, of admissible k-subsets K such
that the k£ x k& minor of (A, B) with column set K is nonzero.
Theorem: If AB? is symmetric (equivalently, U is isotropic),
then B is a symplectic matroid. A symplectic matroid B arising
in this way is called representable (or C,-representable).

A representable symplectic matroid is unchanged by row
operations and the torus action:

If X € GL, then (A, B) and (XA, X B) represent the same
symplectic matroid.

If A € GL,, is diagonal, then (A, B) and (AA~!, BA) represent
the same symplectic matroid.
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Homogeneous Symplectic Matroids

Given an admissible set A € Ji, let A9 = AN [n] and
Ay = AN [n]*. Then let flag(A) = (Ao, [n] \ 47).
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Homogeneous Symplectic Matroids

Given an admissible set A € Jy, let Ag = AN [n] and

Ay = AN [n]*. Then let flag(A) = (Ao, [n] \ 47).

A collection B C J, is m-homogeneous if |A N [n]| = m for all
AeB.

Theorem: Let k =m + ¢, and let B C J; be m-homogeneous.
Then B is a symplectic matroid if and only if

flag(B) := {flag(A) : A € B} is a (type-A) flag matroid of rank

(m,n —1).

Example: Let m =2, £ =1, (so k =3), and n = 4.

Let B = {124%,123*,13%4,12%4, 234*,2*34,23*4}. Then flag(B) is
{(12,123),(12,124),(14,124), (14,134), (23,123), (34, 134), (24, 124) }.
The collection B is a 2-homogeneous symplectic matroid, and
flag(B) is a flag matroid of rank (2, 3).
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Representable Homogeneous Symplectic Matroids

The homogeneous symplectic matroid B is representable if and
only if flag(B) is a representable flag matroid.
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Representable Homogeneous Symplectic Matroids

The homogeneous symplectic matroid B is representable if and
only if flag(B) is a representable flag matroid.

Theorem

Let B be a symplectic matroid of rank k = m + £ represented by
a k x 2n matriz (A, B). The following are equivalent:

Q@ B is m-homogeneous.

@ rank(A) = m and rank(B) = /.

@ B may be represented by a matrixz of the form <§ 2) ,
where Y ism xmn, Z is{ xn, and YZ' = 0.

© B is m-homogeneous, the constituent of flag(B) of rank m
is represented by rowsp(Y'), the constituent of flag(B) of
rank n — ¢ is represented by (rowsp(Z))*, and
rowsp(Y) C (rowsp(Z))= .
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