Coxeter Matroids Sections 3.1–3.5

Coxeter Matroids Sections 3.1–3.5

Coxeter Matroids Sections 3.1–3.5

<20 ≥ 2

Let $J = [n] \cup [n]^*$. A subset $K \subseteq J$ is **admissible** if $K \cap K^* = \emptyset$.

Image: A matching of the second se

э

Let $J = [n] \cup [n]^*$. A subset $K \subseteq J$ is **admissible** if $K \cap K^* = \emptyset$.

Let J_k denote the collection of k-element admissible subsets of J.

Let $J = [n] \cup [n]^*$. A subset $K \subseteq J$ is **admissible** if $K \cap K^* = \emptyset$.

Let J_k denote the collection of k-element admissible subsets of J.

The hyperoctahedral group BC_n is the set of bijections $w: J \to J$ such that $w(i^*) = w(i)^*$ for all $i \in [n]$.

Let $J = [n] \cup [n]^*$. A subset $K \subseteq J$ is **admissible** if $K \cap K^* = \emptyset$.

Let J_k denote the collection of k-element admissible subsets of J.

The hyperoctahedral group BC_n is the set of bijections $w: J \to J$ such that $w(i^*) = w(i)^*$ for all $i \in [n]$.

For each $w \in BC_n$, we get the **admissible ordering** $<^w$ given by $w(n^*) <^w \cdots <^w w(1^*) <^w w(1) <^w \cdots <^w w(n)$.

Let $J = [n] \cup [n]^*$. A subset $K \subseteq J$ is **admissible** if $K \cap K^* = \emptyset$.

Let J_k denote the collection of k-element admissible subsets of J.

The hyperoctahedral group BC_n is the set of bijections $w: J \to J$ such that $w(i^*) = w(i)^*$ for all $i \in [n]$. For each $w \in BC_n$, we get the **admissible ordering** $<^w$ given by $w(n^*) <^w \cdots <^w w(1^*) <^w w(1) <^w \cdots <^w w(n)$. Given $A = \{a_1 <^w \cdots <^w a_k\}$ and $B = \{b_1 <^w \cdots <^w b_k\}$ in J_k ,

we write $A \leq^w B$ if $a_1 \leq^w b_1, \ldots, a_k \leq^w b_k$.

Let $J = [n] \cup [n]^*$. A subset $K \subseteq J$ is **admissible** if $K \cap K^* = \emptyset$.

Let J_k denote the collection of k-element admissible subsets of J.

The hyperoctahedral group BC_n is the set of bijections $w: J \to J$ such that $w(i^*) = w(i)^*$ for all $i \in [n]$.

For each $w \in BC_n$, we get the **admissible ordering** $<^w$ given by $w(n^*) <^w \cdots <^w w(1^*) <^w w(1) <^w \cdots <^w w(n)$. Given $A = \{a_1 <^w \cdots <^w a_k\}$ and $B = \{b_1 <^w \cdots <^w b_k\}$ in J_k , we write $A \leq^w B$ if $a_1 \leq^w b_1, \ldots, a_k \leq^w b_k$.

A symplectic matroid of rank k is a collection $\mathcal{B} \subseteq J_k$ such that for every $w \in BC_n$, there is a unique maximal element of \mathcal{B} with respect to the ordering \leq^w . The sets in \mathcal{B} are the **bases**. A symplectic matroid of rank n is a Lagrangian matroid.

Coxeter Matroids Sections 3.1–3.5

글▶ 글

Let n = k = 3. Let $\mathcal{B} = J_3 \setminus \{[3]\}$.

Let n = k = 3. Let $\mathcal{B} = J_3 \setminus \{[3]\}$.

To see that \mathcal{B} is a Lagrangian matroid, choose $w \in BC_3$, and let $L = \{w(1), w(2), w(3)\}$. If $L \neq [3]$, then L is the unique maximal element of \mathcal{B} with respect to \leq^w .

Let n = k = 3. Let $\mathcal{B} = J_3 \setminus \{[3]\}.$

To see that \mathcal{B} is a Lagrangian matroid, choose $w \in BC_3$, and let $L = \{w(1), w(2), w(3)\}$. If $L \neq [3]$, then L is the unique maximal element of \mathcal{B} with respect to \leq^w . If L = [3], then $\{w(1^*), w(2), w(3)\}$ is the unique maximal

element of \mathcal{B} with respect to \leq^{w} .

Root Systems

Coxeter Matroids Sections 3.1–3.5

표 표

Root Systems

Let

$$\Phi = \{\pm 2\epsilon_i : 1 \le i \le n\} \cup \{\pm \epsilon_i \pm \epsilon_j : 1 \le i, j \le n, i \ne j\}$$

denote the root system of type C_n . The book uses the type-C root system instead of type B, which doesn't matter since we will only care about directions (not lengths) of roots.

Root Systems

Let

$$\Phi = \{\pm 2\epsilon_i : 1 \le i \le n\} \cup \{\pm \epsilon_i \pm \epsilon_j : 1 \le i, j \le n, i \ne j\}$$

denote the root system of type C_n . The book uses the type-C root system instead of type B, which doesn't matter since we will only care about directions (not lengths) of roots.

Also,

$$\Pi = \{2\epsilon_1, \epsilon_2 - \epsilon_1, \dots, \epsilon_n - \epsilon_{n-1}\}$$

is the set of simple roots.

Coxeter Matroids Sections 3.1–3.5

I ∃ ►

크

For $A \in J_k$, let $\delta_A = \sum_{j \in A} \epsilon_j$, where $\epsilon_{j^*} = -\epsilon_j$.

<20 € > 20 €

For $A \in J_k$, let $\delta_A = \sum_{j \in A} \epsilon_j$, where $\epsilon_{j^*} = -\epsilon_j$. **Lemma:** If $A \leq B$, then $\delta_B - \delta_A$ is a nonnegative linear combination of positive roots.

For $A \in J_k$, let $\delta_A = \sum_{j \in A} \epsilon_j$, where $\epsilon_{j^*} = -\epsilon_j$.

Lemma: If $A \leq B$, then $\delta_B - \delta_A$ is a nonnegative linear combination of positive roots.

The converse is false, but it becomes true if we assume $\delta_B - \delta_A$ is parallel to a root.

For $A \in J_k$, let $\delta_A = \sum_{j \in A} \epsilon_j$, where $\epsilon_{j^*} = -\epsilon_j$.

Lemma: If $A \leq B$, then $\delta_B - \delta_A$ is a nonnegative linear combination of positive roots.

The converse is false, but it becomes true if we assume $\delta_B - \delta_A$ is parallel to a root.

Theorem (Gelfand–Serganova Theorem for Symplectic Matroids)

Let $\mathcal{B} \subseteq J_k$, and let Δ be the convex hull of $\{\delta_A : A \in \mathcal{B}\}$. Then \mathcal{B} is a symplectic matroid if and only if all edges of Δ are parallel to roots in Φ .

Coxeter Matroids Sections 3.1–3.5

표 표

The standard symplectic space is the vector space V with basis $E = \{e_1, \ldots, e_n, e_{1^*}, \ldots, e_{n^*}\}$ and an anti-symmetric bilinear form (\cdot, \cdot) satisfying $(e_i, e_j) = 0$ for all $i, j \in J$ with $i \neq j^*$ and $(e_i, e_{i^*}) = -(e_{i^*}, e_i) = 1$ for all $i \in [n]$.

The standard symplectic space is the vector space V with basis $E = \{e_1, \ldots, e_n, e_{1^*}, \ldots, e_{n^*}\}$ and an anti-symmetric bilinear form (\cdot, \cdot) satisfying $(e_i, e_j) = 0$ for all $i, j \in J$ with $i \neq j^*$ and $(e_i, e_{i^*}) = -(e_{i^*}, e_i) = 1$ for all $i \in [n]$.

We can represent a k-dimensional subspace of V as the row-span of a $k \times 2n$ matrix with columns indexed by $1, \ldots, n, 1^*, \ldots, n^*$.

The standard symplectic space is the vector space V with basis $E = \{e_1, \ldots, e_n, e_{1^*}, \ldots, e_{n^*}\}$ and an anti-symmetric bilinear form (\cdot, \cdot) satisfying $(e_i, e_j) = 0$ for all $i, j \in J$ with $i \neq j^*$ and $(e_i, e_{i^*}) = -(e_{i^*}, e_i) = 1$ for all $i \in [n]$. We can represent a k-dimensional subspace of V as the row-span

of a $k \times 2n$ matrix with columns indexed by $1, \ldots, n, 1^*, \ldots, n^*$.

A subspace U of V is **isotropic** if (u, v) = 0 for all $u, v \in U$.

The standard symplectic space is the vector space V with basis $E = \{e_1, \ldots, e_n, e_{1^*}, \ldots, e_{n^*}\}$ and an anti-symmetric bilinear form (\cdot, \cdot) satisfying $(e_i, e_j) = 0$ for all $i, j \in J$ with $i \neq j^*$ and $(e_i, e_{i^*}) = -(e_{i^*}, e_i) = 1$ for all $i \in [n]$. We can represent a k-dimensional subspace of V as the row-span of a $k \times 2n$ matrix with columns indexed by $1, \ldots, n, 1^*, \ldots, n^*$. A subspace U of V is **isotropic** if (u, v) = 0 for all $u, v \in U$. **Lemma:** A subspace U of V is isotropic if and only if it can be represented by a $k \times 2n$ matrix (A, B) such that AB^t is symmetric.

Coxeter Matroids Sections 3.1–3.5

글▶ 글

Given a $k \times 2n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_k$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero.

Given a $k \times 2n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_k$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero. **Theorem:** If AB^t is symmetric (equivalently, U is isotropic), then \mathcal{B} is a symplectic matroid. A symplectic matroid \mathcal{B} arising in this way is called **representable** (or C_n -representable).

Given a $k \times 2n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_k$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero. **Theorem:** If AB^t is symmetric (equivalently, U is isotropic), then \mathcal{B} is a symplectic matroid. A symplectic matroid \mathcal{B} arising in this way is called **representable** (or C_n -**representable**). A representable symplectic matroid is unchanged by row operations and the torus action:

Given a $k \times 2n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_k$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero. **Theorem:** If AB^t is symmetric (equivalently, U is isotropic), then \mathcal{B} is a symplectic matroid. A symplectic matroid \mathcal{B} arising in this way is called **representable** (or C_n -**representable**). A representable symplectic matroid is unchanged by row operations and the torus action:

If $X \in GL_k$, then (A, B) and (XA, XB) represent the same symplectic matroid.

Given a $k \times 2n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_k$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero. **Theorem:** If AB^t is symmetric (equivalently, U is isotropic), then \mathcal{B} is a symplectic matroid. A symplectic matroid \mathcal{B} arising in this way is called **representable** (or C_n -representable).

A representable symplectic matroid is unchanged by row operations and the torus action:

If $X \in GL_k$, then (A, B) and (XA, XB) represent the same symplectic matroid.

If $\Lambda \in \operatorname{GL}_n$ is diagonal, then (A, B) and $(A\Lambda^{-1}, B\Lambda)$ represent the same symplectic matroid.

Coxeter Matroids Sections 3.1–3.5

글▶ 글

Given an admissible set $A \in J_k$, let $A_0 = A \cap [n]$ and $A_1 = A \cap [n]^*$. Then let $\operatorname{flag}(A) = (A_0, [n] \setminus A_1^*)$.

Given an admissible set $A \in J_k$, let $A_0 = A \cap [n]$ and $A_1 = A \cap [n]^*$. Then let flag $(A) = (A_0, [n] \setminus A_1^*)$. A collection $\mathcal{B} \subseteq J_k$ is *m*-homogeneous if $|A \cap [n]| = m$ for all $A \in \mathcal{B}$.

Given an admissible set $A \in J_k$, let $A_0 = A \cap [n]$ and $A_1 = A \cap [n]^*$. Then let $\operatorname{flag}(A) = (A_0, [n] \setminus A_1^*)$.

A collection $\mathcal{B} \subseteq J_k$ is *m*-homogeneous if $|A \cap [n]| = m$ for all $A \in \mathcal{B}$.

Theorem: Let $k = m + \ell$, and let $\mathcal{B} \subseteq J_k$ be *m*-homogeneous. Then \mathcal{B} is a symplectic matroid if and only if $\operatorname{flag}(\mathcal{B}) := \{\operatorname{flag}(A) : A \in \mathcal{B}\}$ is a (type-A) flag matroid of rank $(m, n - \ell)$.

Given an admissible set $A \in J_k$, let $A_0 = A \cap [n]$ and $A_1 = A \cap [n]^*$. Then let $\operatorname{flag}(A) = (A_0, [n] \setminus A_1^*)$.

A collection $\mathcal{B} \subseteq J_k$ is *m*-homogeneous if $|A \cap [n]| = m$ for all $A \in \mathcal{B}$.

Theorem: Let $k = m + \ell$, and let $\mathcal{B} \subseteq J_k$ be *m*-homogeneous. Then \mathcal{B} is a symplectic matroid if and only if $\operatorname{flag}(\mathcal{B}) := \{\operatorname{flag}(A) : A \in \mathcal{B}\}$ is a (type-A) flag matroid of rank $(m, n - \ell)$.

Example: Let m = 2, $\ell = 1$, (so k = 3), and n = 4. Let $\mathcal{B} = \{124^*, 123^*, 13^*4, 12^*4, 234^*, 2^*34, 23^*4\}$. Then flag(\mathcal{B}) is $\{(12, 123), (12, 124), (14, 124), (14, 134), (23, 123), (34, 134), (24, 124)\}$. The collection \mathcal{B} is a 2-homogeneous symplectic matroid, and flag(\mathcal{B}) is a flag matroid of rank (2, 3).

Representable Homogeneous Symplectic Matroids

Coxeter Matroids Sections 3.1–3.5

Representable Homogeneous Symplectic Matroids

The homogeneous symplectic matroid \mathcal{B} is representable if and only if $\operatorname{flag}(\mathcal{B})$ is a representable flag matroid.

Representable Homogeneous Symplectic Matroids

The homogeneous symplectic matroid \mathcal{B} is representable if and only if $\operatorname{flag}(\mathcal{B})$ is a representable flag matroid.

Theorem

Let \mathcal{B} be a symplectic matroid of rank $k = m + \ell$ represented by a $k \times 2n$ matrix (A, B). The following are equivalent:

- $\bullet \ \mathcal{B} \ is \ m-homogeneous.$
- 2 $\operatorname{rank}(A) = m \text{ and } \operatorname{rank}(B) = \ell.$
- \mathcal{B} may be represented by a matrix of the form $\begin{pmatrix} Y & 0 \\ 0 & Z \end{pmatrix}$, where Y is $m \times n$, Z is $\ell \times n$, and $YZ^t = 0$.
- B is m-homogeneous, the constituent of flag(B) of rank m is represented by rowsp(Y), the constituent of flag(B) of rank n − l is represented by (rowsp(Z))[⊥], and rowsp(Y) ⊆ (rowsp(Z))[⊥].