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Symplectic Matroids

Let J = [n] ∪ [n]∗. A subset K ⊆ J is admissible if
K ∩K∗ = ∅.
Let Jk denote the collection of k-element admissible subsets of
J .

The hyperoctahedral group BCn is the set of bijections
w : J → J such that w(i∗) = w(i)∗ for all i ∈ [n].

For each w ∈ BCn, we get the admissible ordering <w given
by w(n∗) <w · · · <w w(1∗) <w w(1) <w · · · <w w(n).

Given A = {a1 <w · · · <w ak} and B = {b1 <w · · · <w bk} in Jk,
we write A ≤w B if a1 ≤w b1, . . . , ak ≤w bk.

A symplectic matroid of rank k is a collection B ⊆ Jk such
that for every w ∈ BCn, there is a unique maximal element of B
with respect to the ordering ≤w. The sets in B are the bases.
A symplectic matroid of rank n is a Lagrangian matroid.
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Example of a Symplectic Matroid

Let n = k = 3. Let B = J3 \ {[3]}.
To see that B is a Lagrangian matroid, choose w ∈ BC3, and let
L = {w(1), w(2), w(3)}. If L 6= [3], then L is the unique
maximal element of B with respect to ≤w.

If L = [3], then {w(1∗), w(2), w(3)} is the unique maximal
element of B with respect to ≤w.
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Root Systems

Let

Φ = {±2εi : 1 ≤ i ≤ n} ∪ {±εi ± εj : 1 ≤ i, j ≤ n, i 6= j}

denote the root system of type Cn. The book uses the type-C
root system instead of type B, which doesn’t matter since we
will only care about directions (not lengths) of roots.

Also,
Π = {2ε1, ε2 − ε1, . . . , εn − εn−1}

is the set of simple roots.

Coxeter Matroids Sections 3.1–3.5



Root Systems

Let

Φ = {±2εi : 1 ≤ i ≤ n} ∪ {±εi ± εj : 1 ≤ i, j ≤ n, i 6= j}

denote the root system of type Cn. The book uses the type-C
root system instead of type B, which doesn’t matter since we
will only care about directions (not lengths) of roots.

Also,
Π = {2ε1, ε2 − ε1, . . . , εn − εn−1}

is the set of simple roots.

Coxeter Matroids Sections 3.1–3.5



Root Systems

Let

Φ = {±2εi : 1 ≤ i ≤ n} ∪ {±εi ± εj : 1 ≤ i, j ≤ n, i 6= j}

denote the root system of type Cn. The book uses the type-C
root system instead of type B, which doesn’t matter since we
will only care about directions (not lengths) of roots.

Also,
Π = {2ε1, ε2 − ε1, . . . , εn − εn−1}

is the set of simple roots.

Coxeter Matroids Sections 3.1–3.5



Symplectic Matroid Polytopes

For A ∈ Jk, let δA =
∑

j∈A εj , where εj∗ = −εj .
Lemma: If A ≤ B, then δB − δA is a nonnegative linear
combination of positive roots.

The converse is false, but it becomes true if we assume δB − δA
is parallel to a root.

Theorem (Gelfand–Serganova Theorem for Symplectic
Matroids)

Let B ⊆ Jk, and let ∆ be the convex hull of {δA : A ∈ B}. Then
B is a symplectic matroid if and only if all edges of ∆ are
parallel to roots in Φ.
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Isotropic Subspaces

The standard symplectic space is the vector space V with
basis E = {e1, . . . , en, e1∗ , . . . , en∗} and an anti-symmetric
bilinear form (·, ·) satisfying (ei, ej) = 0 for all i, j ∈ J with
i 6= j∗ and (ei, ei∗) = −(ei∗ , ei) = 1 for all i ∈ [n].

We can represent a k-dimensional subspace of V as the row-span
of a k × 2n matrix with columns indexed by 1, . . . , n, 1∗, . . . , n∗.

A subspace U of V is isotropic if (u, v) = 0 for all u, v ∈ U .

Lemma: A subspace U of V is isotropic if and only if it can be
represented by a k × 2n matrix (A,B) such that ABt is
symmetric.
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Representable Symplectic Matroids

Given a k × 2n matrix (A,B) with columns indexed by J ,
consider the collection B ⊆ Jk of admissible k-subsets K such
that the k × k minor of (A,B) with column set K is nonzero.

Theorem: If ABt is symmetric (equivalently, U is isotropic),
then B is a symplectic matroid. A symplectic matroid B arising
in this way is called representable (or Cn-representable).

A representable symplectic matroid is unchanged by row
operations and the torus action:

If X ∈ GLk, then (A,B) and (XA,XB) represent the same
symplectic matroid.

If Λ ∈ GLn is diagonal, then (A,B) and (AΛ−1, BΛ) represent
the same symplectic matroid.

Coxeter Matroids Sections 3.1–3.5



Representable Symplectic Matroids

Given a k × 2n matrix (A,B) with columns indexed by J ,
consider the collection B ⊆ Jk of admissible k-subsets K such
that the k × k minor of (A,B) with column set K is nonzero.

Theorem: If ABt is symmetric (equivalently, U is isotropic),
then B is a symplectic matroid. A symplectic matroid B arising
in this way is called representable (or Cn-representable).

A representable symplectic matroid is unchanged by row
operations and the torus action:

If X ∈ GLk, then (A,B) and (XA,XB) represent the same
symplectic matroid.

If Λ ∈ GLn is diagonal, then (A,B) and (AΛ−1, BΛ) represent
the same symplectic matroid.

Coxeter Matroids Sections 3.1–3.5



Representable Symplectic Matroids

Given a k × 2n matrix (A,B) with columns indexed by J ,
consider the collection B ⊆ Jk of admissible k-subsets K such
that the k × k minor of (A,B) with column set K is nonzero.

Theorem: If ABt is symmetric (equivalently, U is isotropic),
then B is a symplectic matroid. A symplectic matroid B arising
in this way is called representable (or Cn-representable).

A representable symplectic matroid is unchanged by row
operations and the torus action:

If X ∈ GLk, then (A,B) and (XA,XB) represent the same
symplectic matroid.

If Λ ∈ GLn is diagonal, then (A,B) and (AΛ−1, BΛ) represent
the same symplectic matroid.

Coxeter Matroids Sections 3.1–3.5



Representable Symplectic Matroids

Given a k × 2n matrix (A,B) with columns indexed by J ,
consider the collection B ⊆ Jk of admissible k-subsets K such
that the k × k minor of (A,B) with column set K is nonzero.

Theorem: If ABt is symmetric (equivalently, U is isotropic),
then B is a symplectic matroid. A symplectic matroid B arising
in this way is called representable (or Cn-representable).

A representable symplectic matroid is unchanged by row
operations and the torus action:

If X ∈ GLk, then (A,B) and (XA,XB) represent the same
symplectic matroid.

If Λ ∈ GLn is diagonal, then (A,B) and (AΛ−1, BΛ) represent
the same symplectic matroid.

Coxeter Matroids Sections 3.1–3.5



Representable Symplectic Matroids

Given a k × 2n matrix (A,B) with columns indexed by J ,
consider the collection B ⊆ Jk of admissible k-subsets K such
that the k × k minor of (A,B) with column set K is nonzero.

Theorem: If ABt is symmetric (equivalently, U is isotropic),
then B is a symplectic matroid. A symplectic matroid B arising
in this way is called representable (or Cn-representable).

A representable symplectic matroid is unchanged by row
operations and the torus action:

If X ∈ GLk, then (A,B) and (XA,XB) represent the same
symplectic matroid.

If Λ ∈ GLn is diagonal, then (A,B) and (AΛ−1, BΛ) represent
the same symplectic matroid.

Coxeter Matroids Sections 3.1–3.5



Representable Symplectic Matroids

Given a k × 2n matrix (A,B) with columns indexed by J ,
consider the collection B ⊆ Jk of admissible k-subsets K such
that the k × k minor of (A,B) with column set K is nonzero.

Theorem: If ABt is symmetric (equivalently, U is isotropic),
then B is a symplectic matroid. A symplectic matroid B arising
in this way is called representable (or Cn-representable).

A representable symplectic matroid is unchanged by row
operations and the torus action:

If X ∈ GLk, then (A,B) and (XA,XB) represent the same
symplectic matroid.

If Λ ∈ GLn is diagonal, then (A,B) and (AΛ−1, BΛ) represent
the same symplectic matroid.

Coxeter Matroids Sections 3.1–3.5



Homogeneous Symplectic Matroids

Given an admissible set A ∈ Jk, let A0 = A ∩ [n] and
A1 = A ∩ [n]∗. Then let flag(A) = (A0, [n] \A∗1).
A collection B ⊆ Jk is m-homogeneous if |A ∩ [n]| = m for all
A ∈ B.

Theorem: Let k = m+ `, and let B ⊆ Jk be m-homogeneous.
Then B is a symplectic matroid if and only if
flag(B) := {flag(A) : A ∈ B} is a (type-A) flag matroid of rank
(m,n− `).
Example: Let m = 2, ` = 1, (so k = 3), and n = 4.
Let B = {124∗, 123∗, 13∗4, 12∗4, 234∗, 2∗34, 23∗4}. Then flag(B) is
{(12, 123), (12, 124), (14, 124), (14, 134), (23, 123), (34, 134), (24, 124)}.
The collection B is a 2-homogeneous symplectic matroid, and
flag(B) is a flag matroid of rank (2, 3).
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{(12, 123), (12, 124), (14, 124), (14, 134), (23, 123), (34, 134), (24, 124)}.
The collection B is a 2-homogeneous symplectic matroid, and
flag(B) is a flag matroid of rank (2, 3).
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Representable Homogeneous Symplectic Matroids

The homogeneous symplectic matroid B is representable if and
only if flag(B) is a representable flag matroid.

Theorem

Let B be a symplectic matroid of rank k = m+ ` represented by
a k × 2n matrix (A,B). The following are equivalent:

1 B is m-homogeneous.

2 rank(A) = m and rank(B) = `.

3 B may be represented by a matrix of the form

(
Y 0
0 Z

)
,

where Y is m× n, Z is `× n, and Y Zt = 0.

4 B is m-homogeneous, the constituent of flag(B) of rank m
is represented by rowsp(Y ), the constituent of flag(B) of
rank n− ` is represented by (rowsp(Z))⊥, and
rowsp(Y ) ⊆ (rowsp(Z))⊥.
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