Coxeter Matroids Sections 3.1-3.5

Symplectic Matroids

Symplectic Matroids

Let $J=[n] \cup[n]^{*}$. A subset $K \subseteq J$ is admissible if $K \cap K^{*}=\emptyset$.

Symplectic Matroids

Let $J=[n] \cup[n]^{*}$. A subset $K \subseteq J$ is admissible if $K \cap K^{*}=\emptyset$.

Let J_{k} denote the collection of k-element admissible subsets of J.

Symplectic Matroids

Let $J=[n] \cup[n]^{*}$. A subset $K \subseteq J$ is admissible if $K \cap K^{*}=\emptyset$.
Let J_{k} denote the collection of k-element admissible subsets of J.
The hyperoctahedral group $B C_{n}$ is the set of bijections $w: J \rightarrow J$ such that $w\left(i^{*}\right)=w(i)^{*}$ for all $i \in[n]$.

Symplectic Matroids

Let $J=[n] \cup[n]^{*}$. A subset $K \subseteq J$ is admissible if $K \cap K^{*}=\emptyset$.
Let J_{k} denote the collection of k-element admissible subsets of J.
The hyperoctahedral group $B C_{n}$ is the set of bijections $w: J \rightarrow J$ such that $w\left(i^{*}\right)=w(i)^{*}$ for all $i \in[n]$.
For each $w \in B C_{n}$, we get the admissible ordering $<{ }^{w}$ given by $w\left(n^{*}\right)<^{w} \cdots<^{w} w\left(1^{*}\right)<^{w} w(1)<^{w} \cdots<^{w} w(n)$.

Symplectic Matroids

Let $J=[n] \cup[n]^{*}$. A subset $K \subseteq J$ is admissible if $K \cap K^{*}=\emptyset$.
Let J_{k} denote the collection of k-element admissible subsets of J.
The hyperoctahedral group $B C_{n}$ is the set of bijections $w: J \rightarrow J$ such that $w\left(i^{*}\right)=w(i)^{*}$ for all $i \in[n]$.
For each $w \in B C_{n}$, we get the admissible ordering $<{ }^{w}$ given by $w\left(n^{*}\right)<^{w} \cdots<^{w} w\left(1^{*}\right)<^{w} w(1)<^{w} \cdots<^{w} w(n)$.
Given $A=\left\{a_{1}<^{w} \cdots<^{w} a_{k}\right\}$ and $B=\left\{b_{1}<^{w} \cdots<^{w} b_{k}\right\}$ in J_{k}, we write $A \leq^{w} B$ if $a_{1} \leq^{w} b_{1}, \ldots, a_{k} \leq^{w} b_{k}$.

Symplectic Matroids

Let $J=[n] \cup[n]^{*}$. A subset $K \subseteq J$ is admissible if $K \cap K^{*}=\emptyset$.
Let J_{k} denote the collection of k-element admissible subsets of J.
The hyperoctahedral group $B C_{n}$ is the set of bijections $w: J \rightarrow J$ such that $w\left(i^{*}\right)=w(i)^{*}$ for all $i \in[n]$.
For each $w \in B C_{n}$, we get the admissible ordering $<{ }^{w}$ given by $w\left(n^{*}\right)<^{w} \cdots<^{w} w\left(1^{*}\right)<^{w} w(1)<^{w} \cdots<^{w} w(n)$.
Given $A=\left\{a_{1}<^{w} \cdots<^{w} a_{k}\right\}$ and $B=\left\{b_{1}<^{w} \cdots<^{w} b_{k}\right\}$ in J_{k}, we write $A \leq^{w} B$ if $a_{1} \leq^{w} b_{1}, \ldots, a_{k} \leq^{w} b_{k}$.
A symplectic matroid of rank k is a collection $\mathcal{B} \subseteq J_{k}$ such that for every $w \in B C_{n}$, there is a unique maximal element of \mathcal{B} with respect to the ordering \leq^{w}. The sets in \mathcal{B} are the bases. A symplectic matroid of rank n is a Lagrangian matroid.

Example of a Symplectic Matroid

Example of a Symplectic Matroid

Let $n=k=3$. Let $\mathcal{B}=J_{3} \backslash\{[3]\}$.

Example of a Symplectic Matroid

Let $n=k=3$. Let $\mathcal{B}=J_{3} \backslash\{[3]\}$.
To see that \mathcal{B} is a Lagrangian matroid, choose $w \in B C_{3}$, and let $L=\{w(1), w(2), w(3)\}$. If $L \neq[3]$, then L is the unique maximal element of \mathcal{B} with respect to \leq^{w}.

Example of a Symplectic Matroid

Let $n=k=3$. Let $\mathcal{B}=J_{3} \backslash\{[3]\}$.
To see that \mathcal{B} is a Lagrangian matroid, choose $w \in B C_{3}$, and let $L=\{w(1), w(2), w(3)\}$. If $L \neq[3]$, then L is the unique maximal element of \mathcal{B} with respect to \leq^{w}.
If $L=[3]$, then $\left\{w\left(1^{*}\right), w(2), w(3)\right\}$ is the unique maximal element of \mathcal{B} with respect to \leq^{w}.

Root Systems

Root Systems

Let

$$
\Phi=\left\{ \pm 2 \epsilon_{i}: 1 \leq i \leq n\right\} \cup\left\{ \pm \epsilon_{i} \pm \epsilon_{j}: 1 \leq i, j \leq n, i \neq j\right\}
$$

denote the root system of type C_{n}. The book uses the type-C root system instead of type B, which doesn't matter since we will only care about directions (not lengths) of roots.

Root Systems

Let

$$
\Phi=\left\{ \pm 2 \epsilon_{i}: 1 \leq i \leq n\right\} \cup\left\{ \pm \epsilon_{i} \pm \epsilon_{j}: 1 \leq i, j \leq n, i \neq j\right\}
$$

denote the root system of type C_{n}. The book uses the type-C root system instead of type B, which doesn't matter since we will only care about directions (not lengths) of roots.
Also,

$$
\Pi=\left\{2 \epsilon_{1}, \epsilon_{2}-\epsilon_{1}, \ldots, \epsilon_{n}-\epsilon_{n-1}\right\}
$$

is the set of simple roots.

Symplectic Matroid Polytopes

Symplectic Matroid Polytopes

For $A \in J_{k}$, let $\delta_{A}=\sum_{j \in A} \epsilon_{j}$, where $\epsilon_{j^{*}}=-\epsilon_{j}$.

Symplectic Matroid Polytopes

For $A \in J_{k}$, let $\delta_{A}=\sum_{j \in A} \epsilon_{j}$, where $\epsilon_{j^{*}}=-\epsilon_{j}$.
Lemma: If $A \leq B$, then $\delta_{B}-\delta_{A}$ is a nonnegative linear combination of positive roots.

Symplectic Matroid Polytopes

For $A \in J_{k}$, let $\delta_{A}=\sum_{j \in A} \epsilon_{j}$, where $\epsilon_{j^{*}}=-\epsilon_{j}$.
Lemma: If $A \leq B$, then $\delta_{B}-\delta_{A}$ is a nonnegative linear combination of positive roots.
The converse is false, but it becomes true if we assume $\delta_{B}-\delta_{A}$ is parallel to a root.

Symplectic Matroid Polytopes

For $A \in J_{k}$, let $\delta_{A}=\sum_{j \in A} \epsilon_{j}$, where $\epsilon_{j^{*}}=-\epsilon_{j}$.
Lemma: If $A \leq B$, then $\delta_{B}-\delta_{A}$ is a nonnegative linear combination of positive roots.
The converse is false, but it becomes true if we assume $\delta_{B}-\delta_{A}$ is parallel to a root.

Theorem (Gelfand-Serganova Theorem for Symplectic Matroids)

Let $\mathcal{B} \subseteq J_{k}$, and let Δ be the convex hull of $\left\{\delta_{A}: A \in \mathcal{B}\right\}$. Then \mathcal{B} is a symplectic matroid if and only if all edges of Δ are parallel to roots in Φ.

Isotropic Subspaces

Isotropic Subspaces

The standard symplectic space is the vector space V with basis $E=\left\{e_{1}, \ldots, e_{n}, e_{1^{*}}, \ldots, e_{n^{*}}\right\}$ and an anti-symmetric bilinear form (\cdot, \cdot) satisfying $\left(e_{i}, e_{j}\right)=0$ for all $i, j \in J$ with $i \neq j^{*}$ and $\left(e_{i}, e_{i^{*}}\right)=-\left(e_{i^{*}}, e_{i}\right)=1$ for all $i \in[n]$.

Isotropic Subspaces

The standard symplectic space is the vector space V with basis $E=\left\{e_{1}, \ldots, e_{n}, e_{1^{*}}, \ldots, e_{n^{*}}\right\}$ and an anti-symmetric bilinear form (\cdot, \cdot) satisfying $\left(e_{i}, e_{j}\right)=0$ for all $i, j \in J$ with $i \neq j^{*}$ and $\left(e_{i}, e_{i^{*}}\right)=-\left(e_{i^{*}}, e_{i}\right)=1$ for all $i \in[n]$.
We can represent a k-dimensional subspace of V as the row-span of a $k \times 2 n$ matrix with columns indexed by $1, \ldots, n, 1^{*}, \ldots, n^{*}$.

Isotropic Subspaces

The standard symplectic space is the vector space V with basis $E=\left\{e_{1}, \ldots, e_{n}, e_{1^{*}}, \ldots, e_{n^{*}}\right\}$ and an anti-symmetric bilinear form (\cdot, \cdot) satisfying $\left(e_{i}, e_{j}\right)=0$ for all $i, j \in J$ with $i \neq j^{*}$ and $\left(e_{i}, e_{i^{*}}\right)=-\left(e_{i^{*}}, e_{i}\right)=1$ for all $i \in[n]$.
We can represent a k-dimensional subspace of V as the row-span of a $k \times 2 n$ matrix with columns indexed by $1, \ldots, n, 1^{*}, \ldots, n^{*}$. A subspace U of V is isotropic if $(u, v)=0$ for all $u, v \in U$.

Isotropic Subspaces

The standard symplectic space is the vector space V with basis $E=\left\{e_{1}, \ldots, e_{n}, e_{1^{*}}, \ldots, e_{n^{*}}\right\}$ and an anti-symmetric bilinear form (\cdot, \cdot) satisfying $\left(e_{i}, e_{j}\right)=0$ for all $i, j \in J$ with $i \neq j^{*}$ and $\left(e_{i}, e_{i^{*}}\right)=-\left(e_{i^{*}}, e_{i}\right)=1$ for all $i \in[n]$.
We can represent a k-dimensional subspace of V as the row-span of a $k \times 2 n$ matrix with columns indexed by $1, \ldots, n, 1^{*}, \ldots, n^{*}$. A subspace U of V is isotropic if $(u, v)=0$ for all $u, v \in U$.
Lemma: A subspace U of V is isotropic if and only if it can be represented by a $k \times 2 n$ matrix (A, B) such that $A B^{t}$ is symmetric.

Representable Symplectic Matroids

Given a $k \times 2 n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_{k}$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero.

Representable Symplectic Matroids

Given a $k \times 2 n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_{k}$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero. Theorem: If $A B^{t}$ is symmetric (equivalently, U is isotropic), then \mathcal{B} is a symplectic matroid. A symplectic matroid \mathcal{B} arising in this way is called representable (or C_{n}-representable).

Representable Symplectic Matroids

Given a $k \times 2 n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_{k}$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero. Theorem: If $A B^{t}$ is symmetric (equivalently, U is isotropic), then \mathcal{B} is a symplectic matroid. A symplectic matroid \mathcal{B} arising in this way is called representable (or C_{n}-representable).
A representable symplectic matroid is unchanged by row operations and the torus action:

Representable Symplectic Matroids

Given a $k \times 2 n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_{k}$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero. Theorem: If $A B^{t}$ is symmetric (equivalently, U is isotropic), then \mathcal{B} is a symplectic matroid. A symplectic matroid \mathcal{B} arising in this way is called representable (or C_{n}-representable). A representable symplectic matroid is unchanged by row operations and the torus action:
If $X \in \mathrm{GL}_{k}$, then (A, B) and $(X A, X B)$ represent the same symplectic matroid.

Representable Symplectic Matroids

Given a $k \times 2 n$ matrix (A, B) with columns indexed by J, consider the collection $\mathcal{B} \subseteq J_{k}$ of admissible k-subsets K such that the $k \times k$ minor of (A, B) with column set K is nonzero. Theorem: If $A B^{t}$ is symmetric (equivalently, U is isotropic), then \mathcal{B} is a symplectic matroid. A symplectic matroid \mathcal{B} arising in this way is called representable (or C_{n}-representable). A representable symplectic matroid is unchanged by row operations and the torus action:
If $X \in \mathrm{GL}_{k}$, then (A, B) and $(X A, X B)$ represent the same symplectic matroid.
If $\Lambda \in \mathrm{GL}_{n}$ is diagonal, then (A, B) and $\left(A \Lambda^{-1}, B \Lambda\right)$ represent the same symplectic matroid.

Homogeneous Symplectic Matroids

Homogeneous Symplectic Matroids

Given an admissible set $A \in J_{k}$, let $A_{0}=A \cap[n]$ and $A_{1}=A \cap[n]^{*}$. Then let $\operatorname{flag}(A)=\left(A_{0},[n] \backslash A_{1}^{*}\right)$.

Homogeneous Symplectic Matroids

Given an admissible set $A \in J_{k}$, let $A_{0}=A \cap[n]$ and $A_{1}=A \cap[n]^{*}$. Then let $\operatorname{flag}(A)=\left(A_{0},[n] \backslash A_{1}^{*}\right)$.
A collection $\mathcal{B} \subseteq J_{k}$ is m-homogeneous if $|A \cap[n]|=m$ for all $A \in \mathcal{B}$.

Homogeneous Symplectic Matroids

Given an admissible set $A \in J_{k}$, let $A_{0}=A \cap[n]$ and $A_{1}=A \cap[n]^{*}$. Then let $\operatorname{flag}(A)=\left(A_{0},[n] \backslash A_{1}^{*}\right)$.
A collection $\mathcal{B} \subseteq J_{k}$ is m-homogeneous if $|A \cap[n]|=m$ for all $A \in \mathcal{B}$.
Theorem: Let $k=m+\ell$, and let $\mathcal{B} \subseteq J_{k}$ be m-homogeneous. Then \mathcal{B} is a symplectic matroid if and only if $\operatorname{flag}(\mathcal{B}):=\{\operatorname{flag}(A): A \in \mathcal{B}\}$ is a (type-A) flag matroid of rank ($m, n-\ell$).

Homogeneous Symplectic Matroids

Given an admissible set $A \in J_{k}$, let $A_{0}=A \cap[n]$ and $A_{1}=A \cap[n]^{*}$. Then let $\operatorname{flag}(A)=\left(A_{0},[n] \backslash A_{1}^{*}\right)$.
A collection $\mathcal{B} \subseteq J_{k}$ is m-homogeneous if $|A \cap[n]|=m$ for all $A \in \mathcal{B}$.

Theorem: Let $k=m+\ell$, and let $\mathcal{B} \subseteq J_{k}$ be m-homogeneous. Then \mathcal{B} is a symplectic matroid if and only if
$\operatorname{flag}(\mathcal{B}):=\{\operatorname{flag}(A): A \in \mathcal{B}\}$ is a (type-A) flag matroid of rank ($m, n-\ell$).
Example: Let $m=2, \ell=1$, (so $k=3$), and $n=4$.
Let $\mathcal{B}=\left\{124^{*}, 123^{*}, 13^{*} 4,12^{*} 4,234^{*}, 2^{*} 34,23^{*} 4\right\}$. Then flag (\mathcal{B}) is
$\{(12,123),(12,124),(14,124),(14,134),(23,123),(34,134),(24,124)\}$.
The collection \mathcal{B} is a 2 -homogeneous symplectic matroid, and flag (\mathcal{B}) is a flag matroid of rank $(2,3)$.

Representable Homogeneous Symplectic Matroids

Representable Homogeneous Symplectic Matroids

The homogeneous symplectic matroid \mathcal{B} is representable if and only if $\operatorname{fag}(\mathcal{B})$ is a representable flag matroid.

Representable Homogeneous Symplectic Matroids

The homogeneous symplectic matroid \mathcal{B} is representable if and only if $\operatorname{flag}(\mathcal{B})$ is a representable flag matroid.

Theorem

Let \mathcal{B} be a symplectic matroid of rank $k=m+\ell$ represented by $a k \times 2 n$ matrix (A, B). The following are equivalent:
(1) \mathcal{B} is m-homogeneous.
(2) $\operatorname{rank}(A)=m$ and $\operatorname{rank}(B)=\ell$.
(3) \mathcal{B} may be represented by a matrix of the form $\left(\begin{array}{ll}Y & 0 \\ 0 & Z\end{array}\right)$, where Y is $m \times n, Z$ is $\ell \times n$, and $Y Z^{t}=0$.
(1) \mathcal{B} is m-homogeneous, the constituent of $\operatorname{flag}(\mathcal{B})$ of rank m is represented by $\operatorname{rowsp}(Y)$, the constituent of $\operatorname{fag}(\mathcal{B})$ of rank $n-\ell$ is represented by $(\operatorname{rowsp}(Z))^{\perp}$, and $\operatorname{rowsp}(Y) \subseteq(\operatorname{rowsp}(Z))^{\perp}$.

