
SOME TRUE STATEMENTS ABOUT K3 SURFACES
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1. Motivation and Outline

What 4-dimensional orientable closed smooth manifolds do you know? I know S4, S2×S2,CP2,CP2
,

and connected sums thereof. But what comes “next”?

One way we can answer this question is as follows. The above manifolds have pretty basic in-

tersection forms: (0), H :=

(
0 1
1 0

)
, (1), (−1). The next most basic bilinear form appearing as a

summand in intersection forms for 4-manifolds is the matrix of the Dynkin diagram for E8 (there
is a bit of a story as to why, which we will not get into). You can build a manifold with E8 as its
intersection form but it can never be smoothable (Rohlin). In the right basis, K3 has intersection
form 2(−E8)⊕ 3H.

One can also ask for what comes “next” symplectically or complex-geometrically. K3 surfaces are
definitely not easy to understand but they do for example have c1 = 0, and we know which coho-
mology classes are realizable as the class of a symplectic form. They’re also the lowest-dimensional
nontrivial hyperkähler manifolds. We also know some fibrations on K3 surfaces which play nicely
with symplectic geometry (including Lagrangian fibrations).

Since there is at least half a century’s worth of work on K3 from many directions I will be happy
if I can simply point out some interesting phenomena with any clarity at all. Apologies in advance
for omitting your favorite fact about K3 (though if you want to talk about why it can’t split as
a connected sum I’m your woman). For example, it’s a great starting place to understand mirror
symmetry [4].

Plan of talk:

(1) constructions

(2) homeomorphism, diffeomorphism, and deformation-equivalence type

(3) brief remarks on geometry

2. Three Constructions

Complex Projective Surfaces in CP3.

This perspective makes the role of complex and symplectic geometry obvious.

Let d ∈ Z>0. Consider

Sd := {[z0 : z1 : z2 : z3] ∈ CP3 | zd0 + zd1 + zd2 + zd3 = 0}

Facts about the Sd:
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• The Sd are smooth: use the implicit function theorem. One better: they’re complex,
because they’re cut out by holomorphic functions.

• The Sd are simply connected: according to the Lefschetz hyperplane theorem, if H is a
hyperplane in CP3, π1(Sd) = π1(Sd ∩H) because 1 < 4− 1. Let H be the hyperplane with
z3 = 0. Now we can reduce to CP2: let sd consist of those [z0 : z1 : z2] ∈ CP2 for which
[z0 : z1 : z2 : 0] ∈ Sd. Using the Lefschetz hyperplane theorem again with h the hyperplane
with z2 = 0 gives a surjection from π1(sd ∩ h) to π1(sd) because 1 = 2 − 1. Now we can
compute

π1(sd ∩ h) = π1({[z0 : z1] ∈ CP1 | z20 + z21 = 0}) = π1({[1 : i]}) = 0

• c1(Sd) = (4− d)x and c2(Sd) = (d2 − 4d+ 6)x2 where x is the pullback of the generator of
H∗(CP3;Z) (proof: adjunction)

• If p1, p2 are homogeneous polynomials of degree d with smooth zero sets then their zero
sets F1, F2 are diffeomorphic. (We can even do better: monomials correspond to points

in CN(n,d) via specifying the coefficients or the roots. Their zero sets are invariant under
multiplication from C× so their zero sets correspond to points in CPN−1. “A zero set is
singular” is captured in an equation on derivatives, so the singular zero sets form a complex
codimension-1 subspace of CPN−1, and so in fact by connecting the zero sets via a path in
CPN−1 avoiding the singular codimension-1 subspace one can isotope F1 to F2.)

The first four Sd are given as follows:

(1) S1 = CP2 by using the polynomial p(z) = z3.

(2) S2 = CP1 × CP1 by using the polynomial p(z) = z0z3 − z1z2: use the map

CP1 × CP1 → S2 given by ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1]

(3) S3 = CP2#6CP2
(this would take us on a tangent: exercise)

(4) S4 = K3, where

Definition 1. A K3 surface is a simply-connected complex surface with c1 = 0.

First fibration.

We can put a holomorphic CP1-valued fibration on S4 with elliptic fibers.

Use instead z40 − z41 + z42 − z43 = 0 as the defining polynomial. Let L1 = {z0 = z1, z2 = z3} and
L2 = {z0 = −z1, z2 = −z3} be skew projective lines in CP3 (skew: no hyperplane contains them
both). Note Li ⊂ S4. We’ll construct a map S4 → L2.

Let p ∈ S4. Define π(p) as follows:

• for p 6∈ L1, let Hp be the unique hyperplane spanned by p and L1, and set π(p) = Hp ∩ L2

• for p ∈ L1, let Hp be the tangent to S4 at p in CP3, and set π(p) = Hp ∩ L2

One can show [3] that this is an elliptic fibration (compute the fibers directly to show they’re cut
out by cubics and use the degree-genus formula, which is just adjunction).
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Kummer Construction.

This perspective makes the hands-on topology clear. Consider T 4 = S1 × S1 × S1 × S1, where we
think of S1 as U(1) ⊂ C. Z2 acts on T 4 by conjugating each factor. This action has the sixteen
fixed points {(±1,±1,±1,±1)}, so if we quotient we won’t get a smooth manifold. We can obtain
K3 either by

• blowing up at the sixteen points, extending the action by the identity along the exceptional
spheres, then quotienting

• or quotienting, excising small neighborhoods {[(eiθ1 , . . . , eiθ4)] ∈ T 4/Z2 |
∑

i θ
2
i ≤ ε} ∼=

CRP3 of the image of each fixed point (because each layer
∑

i θi = const is a copy of S3

mod Z2, so RP3), and gluing in D∗S2 along the common RP3 boundary; D∗S2 has this
boundary because

– we can compute e(D∗S2)([S2]) = −2 since it’s the unit disk bundle of T ∗S2

– on the other hand, the Euler number of the bundle H obtained by gluing in disks along
the fibers of the Hopf map is the tautological bundle on CP1 and so e(H)([S2]) = −1

– when we construct a new bundle E by quotienting by Z2 before gluing in the disks we
get twice the zeroes of a generic section, so e(E)([S2])

– by the fact that H2(S2;Z) is one-dimensional we can identify disk bundles by their
Euler numbers, so we’ve identified D∗S2 with E, which has boundary RP3 because of
how it was constructed)

Second fibration.

From this construction we can put another fibration on K3 with elliptic fibers.

We take advantage of the hyperelliptic involution T 2 → S2. These exist in all genuses – arrange
the the surface so that a skewer threaded through the “center” pierces all the “holes” – but we can
easily describe it explicitly as a holomorphic map here because we can conjugate on T 2 = S1×S1.
Then T 2/Z2

∼= S2 (the induced metric is singular but one can extend the smooth and complex
structures over the images of the fixed points).

Let []4 denote /Z2 on T 4 and []2 on T 2. The map f : K3→ S2 is then defined by

f : [(z1, z2, z3, z4)]4 7→ [(z1, z2)]2

Its regular fibers are toruses: if (z1, z2) 6∈ {(±1,±1)} then its preimage under f consists of the
image under []4 of {(z1, z2) × T 2} ∪ {(z̄1, z̄2) × T 2}. These two toruses get identified under the
Z2-action on T 4, so they are the same torus in K3.

Its singular fibers are the images under []4 of toruses containing one of the fixed points. In fact,
the fixed points split in T 4 into four groups of four based on their images under f , so one can
see that the image in K3 of these toruses are spheres (the image of the second T 2 factor under
the hyperelliptic involution to K3 from T 4) blown up at 4 points. All these spheres have self-
intersection -2: the exceptional divisors from the fact that they’re the zero sections of D∗S2s, and
the spheres persisting from T 4 by the fact that if F denotes the class of a regular (near a singular
fiber) then F = 2S +

∑
i Si and F 2 = 0.
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It’s a K3.

The involution is holomorphic and if you quotient first, the complex structure can be resolved as
the singularities get resolved. Or you can blow up first.

Note that we can from this perspective also compute π1(K3) = 0: move any loop into a singular
fiber (possible since the base is simply-connected) and shrink there, because the singular fibers are
unions of spheres.

We can also compute c1(K3) = 0: the existence of a nonvanishing holomorphic 2-form is enough;
the form dz1 ∧ dz2 (now we’re thinking of T 4 as C2/Z4 and the involution as (z1, z2) 7→ (−z1,−z2)
– don’t worry too much about it) can be resolved at the singular points of the quotient.

Elliptic Fibrations.

This perspective gives us insight into the myriad ways elliptic surfaces can be organized in K3.

Let C1 be a smooth cubic in CP2 cut out by the polynomial p1 and C2 any other cubic, cut out
by p2. Their intersection number is nine; it’s possible that this intersection is realized in fewer
than nine distinct points (some may be multiple intersections). But for now assume they’re all
distinct (and complex, so transverse and positive). Call the union of the intersection points B.
They generate what’s called a pencil: we can define a map f : CP2 − B → CP1 by sending all
points on the cubic t1p1 + t2p2 to [t1 : t2] ∈ CP1 – every point in CP2−B lies on one of these cubics
– and though we can’t extend the map to CP2, we can blow up at each of the base points to get a

map f : CP2#9CP2 → CP1.

The fibers are the cubics t1p1 + t2p2 = 0; by the degree-genus formula (this is just adjunction) the
fibers have to be elliptic.

Varying C2 gives us many possibilities for the fiber over [0 : 1], which is going to be the proper
transform of C2 (remove the basepoints from C2 ⊂ CP2, consider the image of what remains in the
blown-up manifold, then close it – this will consist of adding in the point in the exceptional divisor
corresponding to the direction C2 approached the basepoint). Therefore the fiber over [0 : 1] could
be...

• if C2 is smooth then the fiber is smooth

• if C2 is nodal, e.g. cut out by zy2 = x3 + zx2, then the fiber is called a fishtail and is
obtained from nearby fibers by collapsing a meridian circle to a point

• if C2 is cuspidal, e.g. cut out by zy2 = x3, then the fiber is called a cusp and is obtained
from nearby fibers by collapsing both meridian circles to a point

• if C2 is a conic plus a line and

– they are not tangent, then they intersect in two points transversely

– they are tangent, then they intersect once to degree two

– you’re welcome for those tautologies – the point is that we’re realizing most of Kodaira’s
possible singular fibers for elliptic fibrations

• if C2 is three lines and

– they are not the same, then we get a triangle of lines (each pair intersects transversely
once) (in the moment polytope, they can be arranged to be the boundary triangle)
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– they are the same, then we get a triple of lines all intersecting in a single point (in the
moment polytope, pick any three lines emanating from a single vertex)

Let’s stop being coy: what we’re talking about is the first elliptic surface E(1). An elliptic
fibration is a proper connected holomorphic map to CP1 with regular fiber an elliptic curve.

There are a couple of ways to figure out how “many” singular fibers a map E(1) → CP1 must
admit. One way is in Miranda [6]. Another way is to show that one can always demand (that is,
for generic choices of the pi it is the case) that the singular fibers are ambiently isotopic to fishtail
fibers. See [3]. Now fishtails have Euler characteristic one – they admit a cell decomposition with
one cell in each dimension. We can build E(1) by gluing together a bunch of T 2 × D2s together
along their boundaries and along these fishtail fibers, and χ(T 2 × D2) = χ(T 2) · χ(D2) = 0 · 1, so

12 = χ(CP2) + 9χ(CP2
)− 18 = χ(CP2#9CP2

) = #{fishtail fibers} · 1.

Definition 2. The fiber sum of two (C∞ only, not necessarily complex) elliptic fibrations Ei is
given as follows: identify neighborhoods νFi of regular fibers with T 2×D2, select a fiber-preserving,
orientation-reversing diffeomorphism ϕ along their boundaries, and glue the Ei − νFi using ϕ to
obtain E1#fE2.

One can show that the diffeomorphism type of E1#fE2 is independent of the choice of ϕ so long
as one Ei contains a cusp fiber (part of the idea is that the monodromy around a cusp fiber can be
factored into monodromies around two fishtail fibers which generate SL(2,Z) = Mod(T 2)).

Let E(n) denote the n-fold fiber sum of E(1). Claim: E(2) is a K3.

E(2) is simply-connected: use Van Kampen’s theorem and the fact that E(1) − νF is simply-
connected. The latter goes as follows. E(1) is simply-connected, so any fundamental group must
come from circles which need to collapse in the T 2×D2. The two circles from the fiber factor never
got to collapse in νF even in E(1), and the circle from the ∂D2 factor can collapse along any of the
nine exceptional sphere sections of E(1).

c1(E(2)) = 0: one can define fiber sum holomorphically as the pullback of the map z 7→ zn on the
base CP1 and show that c1(E(n)) = PD([(2− n)F ]).

A Lagrangian Fibration.

The fibration of E(1) with 12 fishtail fibers provides a fibration of E(2) with 24 fishtail fibers. One
can construct a Kähler form on E(2) for which this fibration is Lagrangian [1], or construct this
fibration given a hyperkähler structure on K3 [4], and this has allowed us to understand a lot about
the mirror symmetry of K3.

(Quick aside: a hyperkähler structure on a Riemannian manifold is a triple of complex structures
which multiply like the quaternions and for which the associated 2-forms are symplectic. Sweet
fact: the only compact complex hyperkähler surfaces are K3s and T 4. Another sweet fact: these
are basically the only ones which admit nice Lagrangian fibrations, see [8].)

3. They are all diffeomorphic

One can compute whether or not a pair of 4-manifolds is homeomorphic by computing its intersec-
tion form and using Freedman’s theorem.
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All K3s are diffeomorphic by Kodaira’s classification of complex surfaces up to deformation equiv-
alence (exhibiting them as regular fibers of proper holomorphic fibrations) and the fact that de-
formation equivalent implies diffeomorphic (essentially because critical values are codimension two
in complex-land, so one can always parallel transport around any singularities to connect regular
fibers of a holomorphic map through a path of regular fibers).

There are exotic K3s, that is, homeomorphic but not diffeomorphic: see Gompf and Mrowka, [2].

Elliptic surfaces are also determined up to diffeomorphism by the fibration structures they admit,
so there’s another way to show that K3s are diffeomorphic as well.

4. They are all Kähler

If you start with a K3 (now that we know what to say, I mean something diffeomorphic to any of
the above constructions with a complex structure), you can always find a symplectic structure to
make it Kähler: [7].

How can K3s be “the same” or not symplectically? This takes us into a discussion of the symplec-
tic cone, those positive H2 classes which admit symplectic forms. It turns out that all of them
do: see [5].

I’m also going to hazard a guess that for any symplectic structure you could want you can always put
on an integrable complex structure, though I’m not familiar enough with hyperkähler/Calabi-Yau
geometry to be definitive. I think just pick a Ricci-flat metric and you should be good.

5. There are More Fibrations

See e.g. [8], in which Smith uses an explicit fibration on K3 to construct genus three Lefschetz
pencils on torus bundles on toruses.
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