1

Maximum at $f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=3+2 \sqrt{2}$
Minimum at $f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=3-2 \sqrt{2}$

2

Change the order of integration before evaluating:

$$
\int_{0}^{1} \int_{x^{2 / 3}}^{1} x \cos \left(y^{4}\right) \mathrm{d} y \mathrm{~d} x=\int_{0}^{1} \int_{0}^{y 3 / 2} x \cos \left(y^{4}\right) \mathrm{d} x \mathrm{~d} y=\frac{\sin (1)}{8}
$$

3

Change into polar coordinates before evaluating:

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right)^{2003} \mathrm{~d} x \mathrm{~d} x=\int_{0}^{\pi / 2} \int_{0}^{1}\left(r^{2}\right)^{2003} r \mathrm{~d} r \mathrm{~d} \theta=\frac{\pi}{8016}
$$

4

Using the hint, make the change of coordinates $x=u+v \sqrt{3}, y=u-v \sqrt{3}$.
The original curve is transformed to $(u+v \sqrt{3})^{2}+(u+v \sqrt{3})(u-v \sqrt{3})+(u-v \sqrt{3})^{2}=1$, which after simplification becomes $u^{2}+v^{2}=1 / 3$.
Evaluate the integral with the change of coordinates (further change into polar coordinates for ease of evaluation):

$$
\iint_{R} 1 \mathrm{~d} x \mathrm{~d} y=\iint_{S} 1\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v=\int_{0}^{2 \pi} \int_{0}^{1 / \sqrt{3}} 1 \cdot 2 \sqrt{3} \cdot r \mathrm{~d} r \mathrm{~d} \theta=\frac{2 \sqrt{3}}{3} \pi
$$

(In the above, R is the region enclosed by $x^{2}+x y+y^{2}=1$ in the $x-y$ plane, and S is the region enclosed by $u^{2}+v^{2}=1 / 3$ in the $u-v$ plane.)

