Details: This is a chain rule problem:

$$
\frac{d}{d t} f(\mathbf{r}(t))=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

We now evaluate the above at $t=2$. When $t=2, \mathbf{r}(2)=\left\langle 1,2,(2)^{2}\right\rangle$. Also, $\mathbf{r}^{\prime}(t)=$ $\langle 0,1,2 t\rangle$, so that at $t=2, \mathbf{r}^{\prime}(2)=\langle 0,1,2(2)\rangle$. Therefore

$$
\left.\frac{d}{d t} f(\mathbf{r}(t))\right|_{t=2}=\left.\left(\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}\right)\right|_{t=2}=5 \cdot 0+6 \cdot 1+7 \cdot 4=34
$$

2

8π
Details: Combine the equation of the two surfaces, $z=x^{2}$ and $z=4-y^{2}$, together, to see that $x^{2}+y^{2}=4$. What this means is that the intersection of the two surfaces (which is a curve) lies on the cylinder $x^{2}+y^{2}=4$, i.e. the surface we are interested in lies entirely on top of the disk $x^{2}+y^{2}=4$ in the $x-y$ plane. We will take this as the region of integration.

$$
\iint_{D}\left(4-y^{2}\right)-\left(x^{2}\right) \mathrm{d} x \mathrm{~d} y=\int_{0}^{2} \int_{0}^{2 \pi}\left(4-r^{2}\right) r \mathrm{~d} \theta \mathrm{~d} r=8 \pi
$$

Alternatively, you may integrate the volume over the $x-z$ plane. The answer is the same, but the integral is harder to compute.

$$
\int_{-2}^{2} \int_{x^{2}}^{4} \sqrt{4-z}-(-\sqrt{4-z}) \mathrm{d} z \mathrm{~d} x=8 \pi
$$

3

The minimum distance is $\sqrt{5} / 2$. The set of points closest to the origin is described by $\left\{x^{2}+y^{2}=1, z=-\frac{1}{2}\right\}$

Details: Use Lagrange Multipliers. For computational ease, we will try to minimize the squared distance to the origin. $d^{2}=f(x, y, z)=x^{2}+y^{2}+z^{2}$. The constraint is $g(x, y, z)=x^{2}+y^{2}-3 / 2-z$. For Lagrange Multipliers, we are trying to solve $\nabla f=\lambda \nabla g$:

$$
\left\{\begin{array}{l}
2 x=\lambda 2 x \\
2 y=\lambda 2 y \\
2 z=-\lambda
\end{array}\right.
$$

From the first equation

$$
\lambda=1 \text { or } x=0
$$

If $\lambda=1$, the third equation tells us $z=-1 / 2$. Plugging back into the constraint, we have

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=1 \tag{1}\\
z=-\frac{1}{2}
\end{array}\right.
$$

as a solution of Lagrange Multiplier.
If on the other hand, $x=0$, then from the second equation $y=0$, and plugging back into the constraint, we have

$$
\left\{\begin{array}{l}
x=y=0 \tag{2}\\
z=-\frac{3}{2}
\end{array}\right.
$$

as another solution of Lagrange Multiplier.
Finally, plug (1) and (2) back into $d=\sqrt{f}$ to find the that (1) is the minimizer, and the minimizing distance is $\sqrt{5} / 2$.

4

$\frac{\pi}{16}$
Details: Take the change of coordinates $u=x^{2}$ and $v=y^{2}$. The point of taking this change of coordinates is to transform the region of integration into the region S in the $u-v$ plane described by $u^{2}+v^{2}=1, u \geq 0, v \geq 0$. The Jacobian is

$$
J=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\frac{1}{\left|\frac{\partial(u, v)}{\partial(x, y)}\right|}=\frac{1}{4 x y}=\frac{1}{4 \sqrt{u v}}
$$

The integral is

$$
\iint_{D} x y \mathrm{~d} x \mathrm{~d} y=\iint_{S} \sqrt{u v} \frac{1}{4 \sqrt{u v}} \mathrm{~d} u \mathrm{~d} v=\frac{1}{4} \iint_{S} \mathrm{~d} u \mathrm{~d} v=\frac{1}{4} \text {. area of quarter circle }=\frac{\pi}{16}
$$

5

Yes, \mathbf{F} is conservative, because we can find the potential $f(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}\right)+C$.
Details: In this problem, you cannot just check $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ to show that \mathbf{F} is conservative, because that theorem requires that the domain D is open and simply connected, which this domain is not, so the Theorem does not apply. To show that \mathbf{F} is conservative, we must produce the function f for which $\nabla f=\mathbf{F}$.

Proceed by the hint: assume $f(x, y)=g(r)$, where $r=\sqrt{x^{2}+y^{2}}$. Then

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=\left\langle\frac{d g}{d r} \frac{\partial r}{\partial x}, \frac{d g}{d r} \frac{\partial r}{\partial y}\right\rangle=\frac{d g}{d r}\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle
$$

Since we want $\nabla f=\mathbf{F}$, this implies that $\frac{d g}{d r}=\frac{1}{\sqrt{x^{2}+y^{2}}}=\frac{1}{r}$. Now, integrate to recover $g(r)=\ln (r)+C$. So that $f(x, y)=g(r)=\ln (r)+C=\ln \left(\sqrt{x^{2}+y^{2}}\right)+C$.

6

$-3 x+3 y-2 z=-3$

Details: The tangent plane will contain both \mathbf{r}_{u} and \mathbf{r}_{v}, so we cross them to find the normal vector. At the point $(1,2,3), u=1$ and $v=2$.

$$
\begin{gathered}
\left.\mathbf{r}_{u}\right|_{(1,2)}=\left.\left\langle 0, v, 3 u^{2}\right\rangle\right|_{(1,2)}=\langle 0,2,3\rangle \\
\left.\mathbf{r}_{v}\right|_{(1,2)}=\left.\langle 1, u, 0\rangle\right|_{(1,2)}=\langle 1,1,0\rangle \\
\Rightarrow \mathbf{n}=\langle 0,2,3\rangle \times\langle 1,1,0\rangle=\langle-3,3,-2\rangle
\end{gathered}
$$

Therefore, the equation of the plane is $-3 x+3 y-2 z=-3$.

7

$\frac{2}{3} \pi(2 \sqrt{2}-1)$

Details: Parameterize the surface in terms of y, z.

$$
\begin{gathered}
\mathbf{r}(y, z)=\langle y z, y, z\rangle \\
\mathbf{r}_{y}(y, z)=\langle z, 1,0\rangle \\
\mathbf{r}_{z}(y, z)=\langle y, 0,1\rangle \\
\Rightarrow \mathbf{r}_{y} \times \mathbf{r}_{z}=\langle 1,-z,-y\rangle
\end{gathered}
$$

The surface integral:
Surface Area $=\iint_{S} 1 \mathrm{~d} S=\iint_{S}\left|\mathbf{r}_{y} \times \mathbf{r}_{z}\right| \mathrm{d} y \mathrm{~d} z=\int_{0}^{1} \int_{0}^{2 \pi} \sqrt{1+r^{2}} r \mathrm{~d} \theta \mathrm{~d} r=\frac{2}{3} \pi(2 \sqrt{2}-1)$
8
(a) Courtesy of WolframAlpha

(b) $\frac{1}{3}$

Details:

(a) Sketch the curve by plotting some points for $\theta=0, \frac{\pi}{4}, \frac{\pi}{2}, \ldots, 2 \pi$.
(b) Integrate one half of one petal and then multiply by 4 to get the area. For $0 \leq \theta \leq \frac{\pi}{2}$, the part of the curve in the first quadrant is traced out from $(0,0)$ to $(0,1)$. This is a graph of x in terms of y, so we use the formula

$$
\int_{a}^{b} x(\theta) y^{\prime}(\theta) \mathrm{d} \theta=\int_{0}^{\pi / 2} \sin \theta \cos \theta \cdot \cos \theta \mathrm{~d} \theta=\frac{1}{3}
$$

9

-1
Detail: Use Stokes' Theorem. First calculate $\operatorname{CurlF}\langle x-1,-y,-1\rangle$. Then find the equation of the plane that contain the three points: $x+y+z=1$. Finally, calculate using Stokes' Theorem:

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} & =\iint_{S} \operatorname{Curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}, \text { by Stokes' Theorem } \\
& =\iint_{T} \operatorname{Curl} \mathbf{F} \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) \mathrm{d} x \mathrm{~d} y \\
& =\iint_{T}\langle x-1,-y,-1\rangle \cdot\langle 1,1,1\rangle \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{1} \int_{0}^{1-y} x-y-2 \mathrm{~d} x \mathrm{~d} y \\
& =-1
\end{aligned}
$$

10

${ }_{6}^{7} \pi$
Details: Use Divergence Theorem. Let S be the surface given in the problem, the upper hemisphere oriented upward. Let D be the disk $\left\{x^{2}+y^{2} \leq 1, z=0\right\}$, oriented downward. Together S and D make a closed surface, to which we apply the Divergence Theorem:

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}+\iint_{D} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iiint_{V} \operatorname{Div} \mathbf{F} \mathrm{~d} V
$$

The second integral over D is zero, because on $D, z=0$, and so $\mathbf{F}=\langle x z, y z, z\rangle=0$.

Therefore

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S} & =\iiint_{V} \operatorname{Div} \mathbf{F} \\
& =\iiint_{V} 2 z+1 \mathrm{~d} V \\
& =\iiint_{V} 2 z \mathrm{~d} V+\iiint_{V} 1 \mathrm{~d} V \\
& =\int_{0}^{1} \int_{0}^{\pi / 2} \int_{0}^{2 \pi} 2 \rho \cos \phi \cdot \rho^{2} \sin \phi \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \rho+\text { Volume of hemisphere } \\
& =\frac{\pi}{2}+\frac{1}{2} \frac{4 \pi}{3} \\
& =\frac{7}{6} \pi
\end{aligned}
$$

