Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivariable calculus course).

5. Quadric Surfaces

Questions

1.

The answer is 3 , none. To figure this out, think about the following fact: any surface obtained by rotating a curve about an axis will have some circular cross-section (in particular, the intersection of the surface with the plane normal to the axis of rotation will be a circle). There are special cases of all of the surfaces which can be so obtained, but none can in general be obtained this way.
2.

A cylinder.

Problems

1.

All can be solved by completing the square and comparing to the general equations, or by checking the intersection with the planes with x, y, or z constant.
(a) Ellipsoid, because all squared terms are positive and they sum to a positive number.
(b) Elliptic cone, because one squared term is negative and they add to zero.
(c) Hyperboloid of one sheet, because (by adding all x, y, z terms over to the right and constants to the left) you can reduce to having one squared term negative and adding to a positive number.
2.

Use the change of variables $x=u+v, y=u-v$ to show that this is a hyperbolic paraboloid.

3.

Show the hint, then show that the surface's intersection with a plane where z is constant and nonzero is a circle (use the change of variables from Problem 2). Why does this show that the surface is a cone?

