Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivariable calculus course).

\#32. The Divergence Theorem

Questions

1.

Zero, since incompressible means zero divergence. So apply the divergence theorem to get zero.
2.

Use the divergence theorem to get the triple integral of 1 over E, which is the volume of E.

Problems

1.

Divergence theorem: $\iiint_{E} \nabla^{2}(f)=6 \iiint_{E} d V=6 \cdot \operatorname{vol}(E)$.
2.
a) Both equal $\int_{C} \vec{F} \cdot d \vec{r}$ by applying Stokes' theorem.
b) S_{1} and S_{2} have the same orientation on their boundary curve C, so if we just glue S_{1} to S_{2} along this boundary curve, the surface orientations won't be compatible. (Think of C as a ring, and S_{1} as the surface obtained by blowing a bubble through the ring. We have two rings and blow out two different surfaces S_{1}, S_{2}, then put them together by putting the rings together. This now encloses a volume, so we can apply the Divergence theorem.)

Thus to form a closed surface with outward orientation everywhere, we need to take $S_{1} \cup-S_{2}$. This will then enclose a volume E bounded by the surface S defined to be $S_{1} \cup-S_{2}$. (Note that we couldn't apply the divergence theorem to S_{1} or S_{2} individually since they didn't enclose a volume.) Now we apply the divergence theorem to E :

$$
\begin{aligned}
& \iint_{S_{1} \cup-S_{2}} \operatorname{curl} \vec{F} \cdot d \vec{S}=\iiint_{E} \operatorname{div} \operatorname{curl} \vec{F} d V=0 \\
& \Longrightarrow \iint_{S_{1}} \operatorname{curl} \vec{F} \cdot d \vec{S}=\iint_{S_{2}} \operatorname{curl} \vec{F} \cdot d \vec{S}
\end{aligned}
$$

Additional problem

Apply Green's theorem with the vector field $\vec{G}=\langle-Q, P\rangle$. The statement of the twodimensional divergence theorem is:

$$
\iint_{D} \operatorname{div} \vec{F} d A=\int_{C} \vec{F} \cdot d \vec{n}
$$

where $d \vec{n}$ is the normal $\langle d y,-d x\rangle$ to the curve. (One can check this is perpendicular to $d \vec{r}=\langle d x, d y\rangle$ by taking the dot product. The convention is that $d \vec{n}$ points out of the area enclosed by the curve when oriented positively.)

$$
\begin{aligned}
\iint_{D}\left(\frac{\partial P}{\partial x}-\frac{\partial(-Q)}{\partial y}\right) d A & =\int_{C} \vec{G} \cdot d \vec{r} \\
\Longrightarrow \iint_{D} \operatorname{div} \vec{F} d A & =\int_{C}\langle-Q, P\rangle \cdot\langle d x, d y\rangle \\
& =\int_{C} \vec{F} \cdot d \vec{n}
\end{aligned}
$$

