Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivariable calculus course).

\#31. Stokes' Theorem

Problems

1.

$\operatorname{curl} \vec{F}=\langle 2,-2,-2$,$\rangle . Treating the surface as a graph of z=4-x^{2}-y^{2}=f(x, y)$ above the disc $x^{2}+y^{2} \leq 4$ in the $x y$-plane, we use that $d \vec{S}= \pm\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y$. The normal should point away from the origin, i.e. have positive $\hat{\mathbf{k}}$ component, so we take + . The integral is then

$$
\iint_{x^{2}+y^{2} \leq 4}\langle 2,-2,-2,\rangle \cdot\langle 2 x, 2 y, 1\rangle d x d y
$$

which we can convert into polars and evaluate to get -8π.

2.

curl $\vec{F}=\langle-y,-1,-1\rangle, d \vec{S}=\langle 1,1 / 2,1\rangle d y d x$, where we think of the triangle is lying on a plane, which is a graph of a function. This plane is the graph of $z=1-x-\frac{1}{2} y$ once we get the normal by taking the cross product of two vectors on the plane.

$$
\int_{0}^{1} \int_{0}^{2-2 x}\langle-y,-1,-1\rangle \cdot\langle 1,1 / 2,1\rangle d y d x=-13 / 6
$$

3.

$\vec{r}(u, v)=\left\langle u v, u+v, u^{2}+v^{2}\right\rangle$ and $\vec{r}_{u} \times \vec{r}_{v}=\left\langle 2 v-2 u, 2 u^{2}-2 v^{2}, v-u\right\rangle$. Lastly, $\operatorname{curl} \vec{F}=\langle 0,-1,0$,$\rangle . Putting everything together we get:$

$$
\int_{0}^{1} \int_{0}^{u}\langle 0,-1,0,\rangle \cdot\left\langle 2 v-2 u, 2 u^{2}-2 v^{2}, v-u\right\rangle d v d u=-1 / 3
$$

