Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivar. calc. course).

3. Polar Coordinates

Questions

1.

(a) $x=r \cos \theta, y=r \sin \theta$.
(b) $r^{2}=x^{2}+y^{2}, \tan \theta=y / x$.
2.
(a) A line passing through the origin.
(b) A circle centered at the origin.
(c) A spiral starting at the origin, counterclockwise.

Problems

1.

(Multiply the polar equation $r=2 \sin \theta$ by r on both sides.) The Cartesian equation is $x^{2}+(y-1)^{2}=1$. The curve is a circle of radius 1 centered at $(0,1)$.
2.
(First write the cartesian equation $(x-1)^{2}+(y-1)^{2}=2$, then substitute in $x=r \cos \theta$, and $y=r \sin \theta$ and simplify by isolating r to one side of the equation.) The polar equation is $r=2(\cos \theta+\sin \theta)$.
3.
(b) We have $x(\theta)=r(\theta) \cos \theta, x(\theta)=r(\theta) \sin \theta$.

$$
\text { Slope }=\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

Using the given polar equation $r(\theta)=3+\cos 4 \theta$, we have $\left.\frac{d y}{d x}\right|_{\theta=\pi / 4}=-1$.
(c) $\frac{d r}{d \theta}=0$ at $\theta=n \frac{\pi}{4}$, where $n=\ldots-2,-1,0,1,2, \ldots$.
$\frac{d r}{d \theta}=0$ at a point means that the change in r with respect to the change in θ is 0 (i.e. at this point, when you vary θ by a little bit, r - the distance from the origin - doesn't change). Geometrically, these are all the points on the curve that is tangent to some circle centered at the origin.
4.
(a) No. Arc Length $=\int_{\pi / 2}^{\infty} \frac{\sqrt{\theta^{2}+1}}{\theta^{2}} \mathrm{~d} \theta$ does not have a finite value.
(b) Yes. Arc Length $=\int_{0}^{\infty} \sqrt{2} e^{-\theta} \mathrm{d} \theta=\sqrt{2}$.
5.

$$
\text { Area }=4 \cdot \int_{0}^{\pi / 4} \frac{1}{2} a^{2} \cos (2 \theta) \mathrm{d} \theta=a^{2}
$$

