Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivariable calculus course).

27. Green's Theorem

Questions

2.

(a) 0

(b) 0 (this is because $f_{xy} = f_{yx}$, since $\mathbf{F} = \nabla f$).

3.

Integrating over a curve dx is not the same as integrating over $\mathbb{R} dx$.

Problems

1.

$$\int_C y^2 \, dx + x \, dy = \int \int_D -2y + 1 \, dA$$

where D is the interior of the ellipse. Making the change of coordinates $u = \frac{x}{a}$ and $v = \frac{y}{b}$ we find that the integral equals $ab\pi$.

2.

(b) You should get zero because C_2 and C_4 are vertical, while **F** has no $\hat{\mathbf{j}}$ component.

(c) C_1 can be parameterized as $\mathbf{r}(t) = (t, c)$ for $a \leq t \leq b$ so

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_a^b (P(t,c), 0) \cdot (1,0) \, dt = \int_a^b P(t,c) \, dt$$

The rest of the answer follows by parameterizing C_3 as $\mathbf{r}(t) = (b + a - t, d)$ for $a \le t \le b$.

(d)
$$P(x,c) - P(x,d)$$

(e)

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{2}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{3}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{4}} \mathbf{F} \cdot d\mathbf{r}$$
$$= \int_{a}^{b} P(x,c) - P(x,d) \, dx \text{ by parts } (a) - (c)$$
$$= \int_{a}^{b} \int_{c}^{d} -\frac{\partial P}{\partial y}(x,y) \, dy \text{ by part } (d)$$
$$= \int \int_{D} -\frac{\partial P}{\partial y} \, dx \, dy$$

3.

In this case $Q_x = 0$, so we get the expected result from Green's theorem.