Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivariable calculus course).

\#20. Surface Area

Problems

1.

Compute f_{x} and f_{y}. Then integrate $\sqrt{f_{x}{ }^{2}+f_{y}{ }^{2}+1}$ over $0 \leq x \leq 1$ and $100-25 x-\sec ^{2} x \leq y \leq 100-\sec ^{2} x$.

2.

For a picture of this, see page 1016, question 24, in the textbook. Suppose both cylinders have radius a. We see that the planes $y=x$ and $y=-x$ divide the region into four symmetric parts. On the $x y$-plane, this corresponds to four triangles. To find the surface area, we find the surface area of the graph of the function above one of these triangles, then multiply by 8 (the top and bottom surface in the four symmetric parts.) So our domain of integration is the triangle in the $x y$-plane with vertices $(0,0),(a,-a)$ and (a, a). The surface is the graph of $z=\sqrt{a^{2}-x^{2}}$. Define $f(x, y)=\sqrt{a^{2}-x^{2}}$. Then

$$
\begin{aligned}
f_{x} & =\frac{-x}{\sqrt{a^{2}-x^{2}}} \\
f_{y} & =0
\end{aligned}
$$

So using the formula for surface area:

$$
\begin{aligned}
\int_{0}^{a} \int_{-x}^{x} \sqrt{\frac{x^{2}}{a^{2}-x^{2}}+1} d y d x & =\int_{0}^{a} \int_{-x}^{x} a \sqrt{\frac{1}{a^{2}-x^{2}}} d y d x \\
& =2 a^{2}
\end{aligned}
$$

Multiplying this by 8 gives the answer of $16 a^{2}$.

