Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivar. calc. course).

2. Tangents, Areas, Arc Lengths, and Surface Areas

Questions

3.

Whenever the curve is the graph of a function $y=f(x)$, the canonical parameterization of this curve is $x(t)=t, y(t)=f(x(t))=f(t)$. Using this parameterization, we recover the given formula (in the problem) from the more general arc length equation (eqn. 2 on the worksheet).

Problems

1.

(a) This is an ellipse. Notice that

$$
\left(\frac{x}{2}\right)^{2}+(y)^{2}=\cos ^{2} t+\sin ^{2} t=1
$$

(b)

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\cos t}{-2 \sin t}
$$

Evaluating at $t=0, \pi / 4, \pi / 2$, we have

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{t=0} & =\frac{1}{0} \Rightarrow \text { vertical tangent } \\
\left.\frac{d y}{d x}\right|_{t=\pi / 4} & =\frac{1 / \sqrt{2}}{-2 / \sqrt{2}} \Rightarrow \text { slope }=-\frac{1}{2} \\
\left.\frac{d y}{d x}\right|_{t=\pi / 2} & =\frac{0}{-2} \Rightarrow \text { slope }=0
\end{aligned}
$$

(c)

$$
\text { Area }=\left|4 \cdot \int_{0}^{\pi / 2} \sin t(-2 \sin t) \mathrm{d} t\right|=|-2 \pi|=2 \pi
$$

The absolute value is inserted because area must be a non-negative number. (The integral itself is negative because we evaluated from $t=0$ to $t=\pi / 2$, which prescribes a right-to-left directionality.)
2.

$$
\text { Arc Length }=\int_{0}^{1} \sqrt{\left(-e^{t} \sin \left(e^{t}\right)\right)^{2}+\left(e^{t} \cos \left(e^{t}\right)\right)^{2}} \mathrm{~d} t=\int_{0}^{1} e^{t} \mathrm{~d} t=e-1
$$

Alternatively, we could reparameterize the curve (using $s=e^{t}$) as $x=\cos s, y=\sin s$, $1 \leq s \leq e$. Evaluating the Arc Length of the curve using the new parameterization gives the same answer.
3.
(a) The circle has cartesian equation $(x-2)^{2}+y^{2}=1$, centered at $(2,0)$, with radius 1 .
(b) Rotating about the x-axis gives a sphere. Rotating about the y-axis gives a torus.
(c)

$$
\text { Surface Area }=\int_{0}^{\pi} 2 \pi \sin t \sqrt{(-\sin t)^{2}+(\cos t)^{2}} \mathrm{~d} t=4 \pi
$$

We take the bounds of integration only from 0 to π because when we rotate about the x-axis, we only need to revolve the top half of the circle to get the complete sphere. Integrating from 0 to 2π (i.e. rotating the whole circle) gets you the surface twice.
(d)

$$
\text { Surface Area }=\int_{0}^{2 \pi} 2 \pi(2+\cos t) \sqrt{(-\sin t)^{2}+(\cos t)^{2}} \mathrm{~d} t=8 \pi^{2}
$$

