Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivariable calculus course).

\#19. Applications of Double Integrals

Problems

1.

The density is $\rho=k r$ since the distance of a point (r, θ) in polar coordinates to the center (assuming the center is at the origin) is just r. Then mass is

$$
\int_{0}^{2 \pi} \int_{0}^{1} k r^{2} d r d \theta=\frac{2 \pi k}{3}
$$

2.

First we find the mass m where $\rho=k$ a constant:

$$
\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} k d y d x=\frac{k}{3}
$$

Then we find the center of mass, where R is the region we're integrating over:

$$
\bar{x}=\frac{1}{m} \iint_{R} x \rho d A=\frac{3}{k} \int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} x k d y d x=\frac{9}{20}
$$

Similarly we find $\bar{y}=\frac{9}{20}$.

