Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivariable calculus course).

\#18. Double Integrals in Polar Coordinates

Questions

1.

For a change in angle of $\Delta \theta$, the corresponding change in the length of the sector traced out by a circle of radius r through the angle $\Delta \theta$ is $r \Delta \theta$.
2.

The square is easier to do in rectangular coordinates (x, y) and it has area $4 a^{2}$. The circle of radius a is easier to do in polar coordinates (r, θ) and it encloses a disc of area πa^{2}.

Problems

1.

The region traced out by the bounds on the double integral is the region below $x=y$ and above $y=x^{2}$ in the first quadrant. Putting this in polar coordinates, we have that θ goes from 0 up to $\pi / 4$ and r goes from 0 out to the curve $r=f(\theta)$ where $r=f(\theta)$ corresponds to the curve $y=x^{2}$. So we need to write $y=x^{2}$ in polar coordinates. Plugging in for r and θ this gives:

$$
r \sin \theta=r^{2} \cos ^{2} \theta \Longrightarrow r(\theta)=\sin \theta /\left(\cos ^{2} \theta\right)=\tan \theta \sec \theta
$$

So the integral becomes:

$$
\int_{0}^{1} \int_{y}^{\sqrt{y}} \sqrt{x^{2}+y^{2}} d x d y=\int_{0}^{\pi / 4} \int_{0}^{\tan \theta \sec \theta} r^{2} d r d \theta
$$

First we do the r integral to get

$$
\frac{1}{3} \int_{0}^{\pi / 4}(\tan \theta \sec \theta)^{3} d \theta
$$

Now we divide $\sin ^{2} \theta+\cos ^{2} \theta=1$ by $\cos ^{2} \theta$ to get $\tan ^{2} \theta+1=\sec ^{2} \theta$, hence the above is:

$$
\begin{aligned}
\frac{1}{3} \int_{0}^{\pi / 4} \tan \theta\left(\sec ^{2} \theta-1\right)(\sec \theta)^{3} d \theta & =\frac{1}{3} \int_{0}^{\pi / 4}\left(\sec ^{4} \theta-\sec ^{2} \theta\right)(\sec \theta \tan \theta) d \theta \\
& =\frac{1}{3}\left[\frac{1}{5} \sec ^{5} \theta-\frac{1}{3} \sec ^{3} \theta\right]_{0}^{\pi / 4} \\
& =\frac{2}{45}(\sqrt{2}+1)
\end{aligned}
$$

where we have used that $\frac{d}{d \theta}(\sec \theta)=\tan \theta \sec \theta$.
2.

Place the cone with its vertex at the origin, and opening up along the positive z-axis. The base of the cone is at height $z=h$. If we had $a=h$, then the cone would be opening up at a 45 degree angle and the equation of the cone would be $z=\sqrt{x^{2}+y^{2}}$. We may not have $a=h$ so we have $z=k \sqrt{x^{2}+y^{2}}$ for some constant k. To find k, look at the line of the cone when $x=0$, so $z=k y$. This line has slope h / a (easiest to see by drawing a picture) so that $k=h / a$ and the cone has equation

$$
z=\frac{h}{a} \sqrt{x^{2}+y^{2}}
$$

So to get the volume, we add up the height $h-\frac{h}{a} r$ over the polar region $0 \leq \theta \leq 2 \pi$, $0 \leq r \leq a$.

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{a}\left(h-\frac{h}{a} r\right) r d r d \theta & =2 \pi\left[\frac{h r^{2}}{2}-\frac{h r^{3}}{3 a}\right]_{0}^{a} \\
& =2 \pi\left[\frac{h a^{2}}{2}-\frac{h a^{2}}{3}\right] \\
& =\pi a^{2} \frac{h}{3}
\end{aligned}
$$

3.

(a) Note that $e^{-\left(x^{2}+y^{2}\right)}$ can be written as a product of a function only in x and only in y so $\int_{a}^{b} \int_{a}^{b} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{a}^{b} e^{-y^{2}} \int_{a}^{b} e^{-x^{2}} d x d y$. The inner integral $\int_{a}^{b} e^{-x^{2}} d x$ doesn't depend on y, i.e. it is a constant, so we can pull it out in front to get $\int_{a}^{b} e^{-x^{2}} d x \int_{a}^{b} e^{-y^{2}} d y$. The variables x and y are "dummy" variables so we can use the x variable in both integrals to get $\left(\int_{a}^{b} e^{-x^{2}} d x\right)^{2}$.
(b) Converting to polar coordinates, the $x y$-plane can be described by $0<r<\infty$ and $0<\theta<2 \pi$.

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta & =\pi\left[-e^{-r^{2}}\right]_{0}^{\infty} \\
& =\pi
\end{aligned}
$$

(c) $\sqrt{\pi}$.

