
Selected solutions for worksheets from Math 53 (U.C. Berkeley’s multivariable calculus
course).

#18. Double Integrals in Polar Coordinates

Questions

1.

For a change in angle of ∆θ, the corresponding change in the length of the sector traced
out by a circle of radius r through the angle ∆θ is r∆θ.

2.

The square is easier to do in rectangular coordinates (x, y) and it has area 4a2. The circle
of radius a is easier to do in polar coordinates (r, θ) and it encloses a disc of area πa2.

Problems

1.

The region traced out by the bounds on the double integral is the region below x = y and
above y = x2 in the first quadrant. Putting this in polar coordinates, we have that θ goes
from 0 up to π/4 and r goes from 0 out to the curve r = f(θ) where r = f(θ) corresponds
to the curve y = x2. So we need to write y = x2 in polar coordinates. Plugging in for r
and θ this gives:

r sin θ = r2 cos2 θ =⇒ r(θ) = sin θ/(cos2 θ) = tan θ sec θ

So the integral becomes:∫ 1

0

∫ √
y

y

√
x2 + y2 dx dy =

∫ π/4

0

∫ tan θ sec θ

0

r2 dr dθ

First we do the r integral to get

1

3

∫ π/4

0

(tan θ sec θ)3 dθ

Now we divide sin2 θ + cos2 θ = 1 by cos2 θ to get tan2 θ + 1 = sec2 θ, hence the above is:

1

3

∫ π/4

0

tan θ(sec2 θ − 1)(sec θ)3 dθ =
1

3

∫ π/4

0

(sec4 θ − sec2 θ)(sec θ tan θ) dθ

=
1

3

[
1

5
sec5 θ − 1

3
sec3 θ

]
0

π/4

=
2

45
(
√

2 + 1)

where we have used that d
dθ

(sec θ) = tan θ sec θ.
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2.

Place the cone with its vertex at the origin, and opening up along the positive z-axis.
The base of the cone is at height z = h. If we had a = h, then the cone would be opening
up at a 45 degree angle and the equation of the cone would be z =

√
x2 + y2. We may

not have a = h so we have z = k
√

x2 + y2 for some constant k. To find k, look at the
line of the cone when x = 0, so z = ky. This line has slope h/a (easiest to see by drawing
a picture) so that k = h/a and the cone has equation

z =
h

a

√
x2 + y2

So to get the volume, we add up the height h − h
a
r over the polar region 0 ≤ θ ≤ 2π,

0 ≤ r ≤ a. ∫ 2π

0

∫ a

0

(
h− h

a
r

)
r dr dθ = 2π

[
hr2

2
− hr3

3a

]a

0

= 2π

[
ha2

2
− ha2

3

]
= πa2h

3

3.

(a) Note that e−(x2+y2) can be written as a product of a function only in x and only in

y so
∫ b

a

∫ b

a
e−(x2+y2) dx dy =

∫ b

a
e−y2 ∫ b

a
e−x2

dx dy. The inner integral
∫ b

a
e−x2

dx doesn’t

depend on y, i.e. it is a constant, so we can pull it out in front to get
∫ b

a
e−x2

dx
∫ b

a
e−y2

dy.
The variables x and y are “dummy” variables so we can use the x variable in both inte-

grals to get
(∫ b

a
e−x2

dx
)2

.

(b) Converting to polar coordinates, the xy−plane can be described by 0 < r < ∞ and
0 < θ < 2π. ∫ 2π

0

∫ ∞

0

e−r2

r dr dθ = π[−e−r2

]0
∞

= π

(c)
√

π.
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