Selected solutions for worksheets from Math 53 (U.C. Berkeley's multivariable calculus course).

15. Lagrange Multipliers

Questions

1.

(b) ∇f points one unit to the right, and ∇g points out (away from the origin) at every point. Recall that the vectors $\nabla f(x, y)$ and $\nabla g(x, y)$ ought to start at (x, y).
(c) When y is positive, the ant crawls clockwise; when y is negative, the ant crawls counterclockwise.
(d) $(1,0)$ maximizes f, and $\nabla f(1,0)$ and $\nabla g(1,0)$ point in the same direction. $(-1,0)$ minimizes f, and $\nabla f(-1,0)$ and $\nabla g(-1,0)$ point in opposite directions.
3.

Level sets can be pretty weird. For example, the level set of zero for $f(x, y)=\min \{|x|,|y|\}$ is the union of the x and y axes. So at $(0,0)$ there is no unique tangent line; how would you pick between the x and y axes?

0.0.1 2.

f would be constant on the level sets of g.

Problems

1.

$f(x, y)=y, g(x, y)=x-2 x^{2} y-y^{2}, g(x, y)=0$. Using Lagrange multipliers, we get $y=\frac{1}{2}$ as the maximum value.
2.

Think about (x, y, z) being the vertex of a box centered at the origin (consider only (x, y, z) in the first quadrant). Then the volume of such a box is given by $f(x, y, z)=$ $(2 x)(2 y)(2 z)=8 x y z$, and $g(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. Using Lagrange multipliers, we get $(x, y, z)=\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}, \frac{c}{\sqrt{3}}\right)$ giving a maximum volume of $\frac{8 a b c}{3 \sqrt{3}}$. (Setting any of $x, y, z=0$ will also give a solution to the Lagrange multipliers equation, but will not maximize volume.)
3.
$f(x, y, z)=A^{2}=s(s-x)(s-y)(s-z)$ (use this instead of A to simplify calculations; it is maximized when A is maximized) and $g(x, y, z)=x+y+z$. We are trying to analyze the situation for $g=p$, any number, and the goal is to show that $x=y=z=\frac{p}{3}$ maximizes area.

